AdvancedSearch
LIU Wei, HU Zhikai, LI Shilei, ZHOU Fan, YANG Yunfei, ZHANG Xiaoke, XIE Yuanfeng, WANG Jinshu. Preparation and emission performance of tungsten-osmium mixed matrix dispenser cathode by microwave sintering[J]. Powder Metallurgy Technology, 2023, 41(3): 199-209. DOI: 10.19591/j.cnki.cn11-1974/tf.2021090011
Citation: LIU Wei, HU Zhikai, LI Shilei, ZHOU Fan, YANG Yunfei, ZHANG Xiaoke, XIE Yuanfeng, WANG Jinshu. Preparation and emission performance of tungsten-osmium mixed matrix dispenser cathode by microwave sintering[J]. Powder Metallurgy Technology, 2023, 41(3): 199-209. DOI: 10.19591/j.cnki.cn11-1974/tf.2021090011

Preparation and emission performance of tungsten-osmium mixed matrix dispenser cathode by microwave sintering

More Information
  • Corresponding author:

    WANG Jinshu, E-mail: wangjsh@bjut.edu.cn

  • Received Date: September 15, 2021
  • Accepted Date: September 15, 2021
  • Available Online: November 07, 2021
  • Submicron tungsten-osmium mixed powders with the different content of Os (atomic number fraction) were prepared by solid‒liquid mixing method. The tungsten-osmium mixed matrix disperser cathodes with the uniform pore structure were obtained by microwave sintering. The electron emission testing results show that, the addition of Os obviously improves the emission performance of the impregnated tungsten-based dispenser cathode. The W–25Os cathode (Os atomic number fraction is 25%) exhibits the relatively low work function and high emission current density. At 1100 ℃, the pulse emission current density of the W–25Os cathode is 42.86 A·cm−2 with the emission slope of 1.40, which is 1.7 times of the conventional barium-tungsten dispenser cathodes under the same working conditions and up to the electron emission level of M-type cathodes. The W–25Os cathode shows the low effective work function as 1.93 eV, which is conducive to the generation of active free barium source. The molar ratio of surface elements Ba:(W+Os) is 0.83:1.00, which is significantly higher than that of the traditional barium tungsten cathode (about 0.50:1.00).

  • [1]
    张兆镗. 真空微波电子器件的发展态势与前途. 真空电子技术, 2019(3): 1

    Zhang Z T. Development trend and future of microwave vacuum electron devices. Vac Electron, 2019(3): 1
    [2]
    丁耀根, 刘濮鲲, 张兆传, 等. 真空电子学和微波真空电子器件的发展和技术现状. 微波学报, 2010, 26(增刊 1): 397

    Ding Y G, Liu P K, Zhang Z C, et al. The state art and development of vacuum electronics and microwave vacuum electron devices. J Microwaves, 2010, 26(Suppl 1): 397
    [3]
    杨明, 刘超, 郑新. 大功率、高频段电真空器件在雷达技术领域的应用分析. 现代雷达, 2017, 39(4): 83

    Yang M, Liu C, Zheng X. A study on the application of high power and high frequency microwave vacuum devices in radar detection system. Mod Radar, 2017, 39(4): 83
    [4]
    McChesney R W. Lee de Forest and the fatherhood of radio. J Am Hist, 1994, 81(1): 310
    [5]
    Gao J Y, Yang Y F, Zhang X K, et al. A review on recent progress of thermionic cathode. Tungsten, 2020, 2(3): 289 DOI: 10.1007/s42864-020-00059-1
    [6]
    Longo R T, Adler E A, Falce L R. Dispenser cathode life prediction model // International Electron Devices Meeting. San Francisco, 1984: 318
    [7]
    程诚, 于志强. 覆锇阴极的蒸发. 真空电子技术, 2014(4): 5

    Cheng C, Yu Z Q. Evaporation of osmium-coated dispenser cathode. Vac Electron, 2014(4): 5
    [8]
    Zalm P, Van Stratum A J A. Osmium dispenser cathodes. Philips Tech Rev, 1966, 27(3-4): 69
    [9]
    Brion D, Tonnerre J C, Shroff A. Electron emission and surface composition of osmium and osmium-tungsten coated dispenser cathodes. Appl Surf Sci, 1985, 20: 429 DOI: 10.1016/0378-5963(85)90166-7
    [10]
    Green M C. The M-type cathode—no longer magic? // 1980 International Electron Devices Meeting. Washington, 1980: 471
    [11]
    Ares Fang C S, Maloney C E. Surface studies of Os/Re/W alloy-coated impregnated tungsten cathodes. J Vac Sci Technol A, 1990, 8(3): 2329 DOI: 10.1116/1.576758
    [12]
    Makarov A P, Kultashev O K. A work model for barium dispenser cathodes with the surface covered by metal Os, Ir or Os (Ir) W alloy layer. Appl Surf Sci, 1997, 111: 56 DOI: 10.1016/S0169-4332(96)00764-7
    [13]
    Goldwater D L, Danforth W E. Thorium dispenser cathodes. J Franklin Inst, 1956, 262(3): 229
    [14]
    Isagawa S, Higuchi T, Kobayashi K, et al. Application of M-type cathodes to high-power cw klystrons. Appl Surf Sci, 1999, 146(1): 89
    [15]
    Jenkins R O. A review of thermionic cathodes. Vacuum, 1969, 19(8): 353 DOI: 10.1016/S0042-207X(69)80077-1
    [16]
    Zhang H L, Liu Y W, Zhang M C, et al. Emission and surface characteristic of ternary alloy Ir/Re/W-coated impregnated tungsten cathodes. Appl Surf Sci, 2005, 251(1-4): 130 DOI: 10.1016/j.apsusc.2005.03.162
    [17]
    张红卫, 吴华夏, 贺兆昌. 新型三元混合基钡钨阴极的发射性能研究. 电子器件, 2007, 30(1): 57

    Zhang H W, Wu H X, He Z C. Emission performance studies of novel tri-mixed barium-tungsten cathode. Chin J Electron Dev, 2007, 30(1): 57
    [18]
    张红卫, 吴华夏, 贺兆昌. 新型二元混合基钡钨阴极的发射性能研究. 电子器件, 2006, 29(2): 308

    Zhang H W, Wu H X, He Z C. Emission performance studies of novel dual mixed barium-tungsten cathode. Chin J Electron Dev, 2006, 29(2): 308
    [19]
    Lai C, Wang J S, Zhou F, et al. Preparation and surface characteristics of Re3W matrix scandate cathode: An experimental and theoretical study. Appl Surf Sci, 2018, 440: 763 DOI: 10.1016/j.apsusc.2018.01.169
    [20]
    赖陈, 王金淑, 周帆, 等. 新型钨铼混合基阴极的热电子发射性能. 稀有金属材料与工程, 2016, 45(7): 1871

    Lai C, Wang J S, Zhou F, et al. Thermal electron emission properties of novel W–Re mixed matrix cathodes. Rare Met Mater Eng, 2016, 45(7): 1871
    [21]
    刘伟, 李俊辉, 王金淑, 等. 微波烧结法制备含钪扩散阴极及其发射性能研究. 稀有金属材料与工程, 2020, 49(5): 1766

    Liu W, Li J H, Wang J S, et al. Preparation of scandium dispenser cathode by microwave sintering and it’ s electron emission property. Rare Met Mater Eng, 2020, 49(5): 1766
    [22]
    Roy R, Agrawal D, Cheng J P, et al. Full sintering of powdered-metal bodies in a microwave field. Nature, 1999, 399: 668 DOI: 10.1038/21390
    [23]
    Chhillar P, Agrawal D, Adair J H. Sintering of molybdenum metal powder using microwave energy. Powder Metall, 2008, 51(2): 182 DOI: 10.1179/174329007X178001
    [24]
    刘伟, 李世磊, 周帆, 等. 微波烧结锇的工艺研究及动力学分析. 粉末冶金技术, 2021, 39(5): 394

    Liu W, Li S L, Zhou F, et al. Process and kinetic analysis of osmium prepared by microwave sintering. Powder Metall Technol, 2021, 39(5): 394
    [25]
    阴生毅, 任峰, 卢志鹏, 等. 覆膜浸渍扩散阴极表面微区电子发射像研究. 电子与信息学报, 2018, 40(10): 2535

    Yin S Y, Ren F, Lu Z P, et al. Study on electron emission phenomenon of the surface micro area of coated impregnated dispenser cathode. J Electron Inf Technol, 2018, 40(10): 2535
  • Related Articles

    [1]DENG Xiaochun, KANG Xiaodong, ZHANG Guohua. Preparation of WC–xVC composite powders and the effect of high content VC on microstructure and mechanical properties of WC–Co based cemented carbides[J]. Powder Metallurgy Technology, 2024, 42(3): 226-233, 254. DOI: 10.19591/j.cnki.cn11-1974/tf.2023120013
    [2]YAO Hui-long, XIONG Ning, WANG Ling, QIN Ying-nan, ZHOU Wu-ping, YANG Lin. Effect of cyclic heat treatment on impact toughness of 93W–5Ni–2Fe tungsten heavy alloy[J]. Powder Metallurgy Technology, 2021, 39(3): 269-273. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030009
    [3]Chen Ding, Hu Shan, Zhang Zhongjian, Xu Tao, Peng Wen, Yuan Hongmei. Research status of fracture toughness testing for cemented carbides[J]. Powder Metallurgy Technology, 2013, 31(3): 216-222. DOI: 10.3969/j.issn.1001-3784.2013.03.011
    [4]Xie Zhuangde, Shen Jun, Dong Yinsheng, Zhou Bide, Li Qingchun. RAPIDLY SOLIDIFIED ALUMINUM-SILICON ALLOYS PRODUCTION, MICROSTRUCTURE AND FRACTURE BEHAVIOR[J]. Powder Metallurgy Technology, 2000, 18(2): 111-116.
    [5]Liu Ning, Jiang Yong, Lu Qingrong, Xiong Weihao, Cui Kun, Hu Zhenhua. EFFECT OF CHEMICAL COMPOSITION ON THE FRACTURE TOUGHNESS OF Ti(C, N) BASED CERMETS[J]. Powder Metallurgy Technology, 1999, 17(4): 269-272.
    [6]Cao Shunhua, Xu Runze. Measurement of Sintered Steel's Fracture Toughness by Repeated Impact with Low Energy[J]. Powder Metallurgy Technology, 1997, 15(3): 217-219.
    [7]Tong Guoquan, Wang Erde, He Shaoyuan. STUDY ON TESTING METHOD AND FRACTURE MODE OF WC-20(Fe/Co/Ni) CEMENTED CARBIDE[J]. Powder Metallurgy Technology, 1995, 13(1): 38-43.
    [8]Luo Huahui, Shen Shuting, Cai Yixun. A STUDY OF FRACTURE TOUGHNESS OF HARDMETALS BY CHEVRON-NOTCHING METHOD[J]. Powder Metallurgy Technology, 1989, 7(3): 165-171.
    [9]Huang Luguan. FRACTURE TOUGHNESS AND HIGH DUCTILITY OF STEEL-BONDED CARBIDE[J]. Powder Metallurgy Technology, 1986, 4(1): 10-15.
    [10]Zhen Zhenxian, Yao Heng, Zhu Guisen, Liu Mingcheng. EFFECTS OF VACUUM HEAT-TREATMENT ON FRACTURE TOUGHNESS OF HEAVY ALLOYS (95W-3.5Ni-1.5Fe)[J]. Powder Metallurgy Technology, 1984, 2(4): 11-15.

Catalog

    Article Metrics

    Article views (813) PDF downloads (54) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return