AdvancedSearch
LI Hong-wei, WANG Ruo-da, WEI Shao-hua, YANG Zhi-yu, NIE Jun-hui. Hot deformation behavior and ring rolling process of SiCp/Al composites used in aircraft manufacturing[J]. Powder Metallurgy Technology, 2022, 40(6): 541-548. DOI: 10.19591/j.cnki.cn11-1974/tf.2022010001
Citation: LI Hong-wei, WANG Ruo-da, WEI Shao-hua, YANG Zhi-yu, NIE Jun-hui. Hot deformation behavior and ring rolling process of SiCp/Al composites used in aircraft manufacturing[J]. Powder Metallurgy Technology, 2022, 40(6): 541-548. DOI: 10.19591/j.cnki.cn11-1974/tf.2022010001

Hot deformation behavior and ring rolling process of SiCp/Al composites used in aircraft manufacturing

More Information
  • Corresponding author:

    WANG Ruo-da, wangruoda@ccidthinktank.com

  • Received Date: January 08, 2022
  • Accepted Date: January 09, 2022
  • Available Online: March 01, 2022
  • To study the thermal deformation behavior of high-strength and high-toughness SiC particle reinforced aluminum matrix composites (SiCp/Al) used in aircraft manufacturing and to provide the technical basis for the preparation of large size rings by ring rolling used for the aviation, the 17%SiCp/Al composites (volume fraction) were prepared by powder metallurgy process. The stress-strain relationships of the SiCp/Al composites under the different thermal deformation conditions were obtained through the thermal compression experiments at the different temperatures and deformation rates, and the thermal working diagram was established according to the relationship. In the results, with the increase of deformation, the SiCp/Al composites are prone to the instability deformation at the deformation temperature lower than 440 ℃ or higher than 490 ℃ and the deformation rates higher than 0.100 s‒1. When the deformation temperature and deformation rate of the SiCp/Al composite are not suitable, besides the traditional process defects such as the instability deformation but also the surface cracking caused by the particle damage may occur, which cannot be removed by machining and should be avoided. Finally, under the guidance of the hot working diagram and the verification of the ring rolling experiment, the process parameters suitable for the ring rolling of the SiCp/Al composite are given, and the circular workpieces prepared using the SiCp/Al composites with the outer diameter of 1200 mm are prepared.

  • [1]
    Kumar S, Singh R, Hashmi M S J. Metal matrix composite: a methodological review. Adv Mater Process Technol, 2019, 6(1): 13
    [2]
    周立玉, 李秀兰, 钟强, 等. 陶瓷颗粒增强铝基复合材料制备工艺研究进展. 热加工工艺, 2020, 49(18): 21 DOI: 10.14158/j.cnki.1001-3814.20183200

    Zhou L Y, Li X L, Zhong Q, et al. Research progress in preparation of ceramic particle reinforced aluminum matrix composites. Hot Working Technol, 2020, 49(18): 21 DOI: 10.14158/j.cnki.1001-3814.20183200
    [3]
    Nardone V C, Prewo K M. On the strength of discontinuous silicon carbide reinforced aluminum composites. Scr Metall, 1986, 20(1): 43 DOI: 10.1016/0036-9748(86)90210-3
    [4]
    侯雅男, 杨昆明, 刘悦, 等. 界面热失配对金属基复合材料力学性能的影响研究. 粉末冶金技术, https://doi.org/10.19591/j.cnki.cn11-1974/tf.2021030033

    Hou Y N, Yang K M, Liu Y, et al. Research progress on the effect of interfacial thermal mismatch on mechanical properties of metal matrix composites. Powder Metall Technol, https://doi.org/10.19591/j.cnki.cn11-1974/tf.2021030033
    [5]
    Ashby M F, Johnson L. On the generation of dislocations at misfitting particles in a ductile matrix. Philos Mag A, 1969, 20(167): 1009 DOI: 10.1080/14786436908228069
    [6]
    Miller W S, Humphreys F J. Strengthening mechanisms in particulate metal matrix composites. Scr Metall Mater, 1991, 25(1): 33 DOI: 10.1016/0956-716X(91)90349-6
    [7]
    Yang Z, Fan J, Liu Y, et al. Effect of the particle size and matrix strength on strengthening and damage process of the particle reinforced metal matrix composites. Materials, 2021, 14(3): 675 DOI: 10.3390/ma14030675
    [8]
    Lewis C A, Withers P J. Weibull modelling of particle cracking in metal matrix composites. Acta Metall Mater, 1995, 43(10): 3685 DOI: 10.1016/0956-7151(95)90152-3
    [9]
    陈锦, 熊宁, 葛启录, 等. 热等静压法制备大尺寸铝基碳化硼复合材料及性能研究. 粉末冶金技术, 2020, 38(2): 132 DOI: 10.19591/j.cnki.cn11-1974/tf.2020.02.008

    Chen J, Xiong N, Ge Q L, et al. Fabrication and properties of large size aluminum-based boron carbide composites by hot isostatic pressing. Powder Metall Technol, 2020, 38(2): 132 DOI: 10.19591/j.cnki.cn11-1974/tf.2020.02.008
    [10]
    Chegini M, Aboutalebi M R, Seyedein S H, et al. Study on hot deformation behavior of AISI 414 martensitic stainless steel using 3D processing map. J Manuf Process, 2020, 56: 916 DOI: 10.1016/j.jmapro.2020.05.008
    [11]
    Lin N, Huang N, Dong N, et al. Hot deformation behaviors in Ti−6Al−4V/(TiB+TiC) composites. Acta Metall Sinica, 2021, 34(12): 11
    [12]
    Wang J, Li S, Ma H. Evolution of microstructure, texture, and mechanical properties of as-extruded ND/ZK60 composite during hot compression deformation. Metals, 2020, 10(9): 1191 DOI: 10.3390/met10091191
    [13]
    Meng Q, Bai C, Xu D. Flow behavior and processing map for hot deformation of ATI425 titanium alloy. J Mater Sci Technol, 2018, 34(4): 679 DOI: 10.1016/j.jmst.2017.07.015
    [14]
    庞晋安, 彭名卿 , 郝世明. 40%SiCp/Al复合材料的热变形行为及热加工图研究. 粉末冶金技术, https://doi.org/10.19591/j.cnki.cn11-1974/tf.2021080007

    Pang J A, Peng M Q, Hao S M. Study on hot deformation behavior and hot processing map of 40%SiCp/Al composites. Powder Metall Technol, https://doi.org/10.19591/j.cnki.cn11-1974/tf.2021080007
    [15]
    Yang Q, Lei L, Fan X, et al. Microstructure evolution and processing map of Al–Cu–Li–Mg–Ag alloy. Mater Chem Phys, 2020, 254: 123256 DOI: 10.1016/j.matchemphys.2020.123256
    [16]
    Yang Z, Fan J Z, Liu Y Q, et al. Effect of combination variation of particle and matrix on the damage evolution and mechanical properties of particle reinforced metal matrix composites. Mater Sci Eng A, 2021, 806: 140804 DOI: 10.1016/j.msea.2021.140804
    [17]
    Williams J J, Flom Z, Amell A A, et al. Damage evolution in SiC particle reinforced Al alloy matrix composites by X-ray synchrotron tomography. Acta Mater, 2010, 58(18): 6194 DOI: 10.1016/j.actamat.2010.07.039
  • Related Articles

    [1]FAN Xinyi, HU Lingui, DENG Zehaochen, YANG Jiaqi, SHEN Xiaoping. Effect of phosphorus content on the mechanical and friction properties of oil-impregnated bronze bearings[J]. Powder Metallurgy Technology, 2024, 42(2): 200-206. DOI: 10.19591/j.cnki.cn11-1974/tf.2021090006
    [2]HOU Yanan, YANG Kunming, LIU Yue, FAN Tongxiang. Effect of interfacial thermal mismatch on mechanical properties of metal matrix composites[J]. Powder Metallurgy Technology, 2023, 41(6): 490-499, 507. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030033
    [3]YANG Jie, LIU Le, HUANG Xiaolin. Microstructure and mechanical properties of powder metallurgy sinter hardening steels with low Cr content[J]. Powder Metallurgy Technology, 2023, 41(4): 345-349, 355. DOI: 10.19591/j.cnki.cn11-1974/tf.2020060008
    [4]PENG Erbao, MA Xiao. Microstructure and mechanical properties of nanoscale xSiC/Mg‒5.5Zn‒0.1Y alloys by solid phase synthesis[J]. Powder Metallurgy Technology, 2023, 41(2): 149-153. DOI: 10.19591/j.cnki.cn11-1974/tf.2020110009
    [5]GU Si-min, XIAO Ping-an, GU Jing-hong, LÜ Rong, ZHAO Ji-kang, ZHONG Si-yuan. Effect of two-stage supersolidus liquid phase sintering on microstructure and properties of 15Cr high chromium cast iron[J]. Powder Metallurgy Technology, 2022, 40(1): 13-21. DOI: 10.19591/j.cnki.cn11-1974/tf.2021040016
    [6]WEI Zi-chen, ZHANG Lin, QIN Ming-li, LI Xing-yu, QUE Zhong-you, QU Xuan-hui. Effect of powder size on microstructure and mechanical properties of rhenium[J]. Powder Metallurgy Technology, 2021, 39(3): 196-202. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030014
    [7]WANG Xin-feng, HE Wei-wei, ZHU Ji-lei, XIANG Chang-shu. Microstructure and mechanical properties of Fe–Co–Ni based superalloy prepared by hot isostatic pressing[J]. Powder Metallurgy Technology, 2020, 38(5): 371-376, 390. DOI: 10.19591/j.cnki.cn11-1974/tf.2019060006
    [8]SUN Lu, ZHANG Ji-feng, QIU Tian-xu, SHEN Xiao-ping. Effect of forging temperature on microstructure and mechanical properties of powder hot-forged alloy contained molybdenum[J]. Powder Metallurgy Technology, 2020, 38(3): 174-182. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.03.002
    [9]LIU Ren-zhi, AN Geng, YANG Qin-li, ZHUANG Fei, WANG Yin-ting, CUI Yu-qing, WANG Na, CAO Wei-cheng. Microstructures and mechanical properties of Mo-Re-La alloy[J]. Powder Metallurgy Technology, 2018, 36(6): 429-432,444. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.06.005
    [10]Wang Fuchi, Wang Yingchun, Huang Guohua, Li Shukui. Effects of Carbon Content on Precipitated Phase and Dynamic Mechanical Properties of W-Ni-Fe Heavy Alloys[J]. Powder Metallurgy Technology, 1998, 16(2): 93-96.
  • Cited by

    Periodical cited type(1)

    1. 顾祥宇,林媛,曲星霖,郭玉玺,张利,李晓峰. 激光功率对激光粉末床熔融成形Fe–Mn–Al–Ni–C轻质钢组织及性能的影响. 粉末冶金技术. 2024(05): 471-480 . 本站查看

    Other cited types(0)

Catalog

    Article Metrics

    Article views (466) PDF downloads (60) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return