AdvancedSearch
ZHAO Shao-yang, TAN Ping, LI Zeng-feng, YIN Jing-ou, SHEN Lei. Study on preparation technology of spherical TiAl alloy powders used for additive manufacturing[J]. Powder Metallurgy Technology, 2022, 40(6): 488-493. DOI: 10.19591/j.cnki.cn11-1974/tf.2022010007
Citation: ZHAO Shao-yang, TAN Ping, LI Zeng-feng, YIN Jing-ou, SHEN Lei. Study on preparation technology of spherical TiAl alloy powders used for additive manufacturing[J]. Powder Metallurgy Technology, 2022, 40(6): 488-493. DOI: 10.19591/j.cnki.cn11-1974/tf.2022010007

Study on preparation technology of spherical TiAl alloy powders used for additive manufacturing

More Information
  • Corresponding author:

    TAN Ping, E-mail: 13892823175@163.com

  • Received Date: January 11, 2022
  • Accepted Date: January 11, 2022
  • Available Online: April 12, 2022
  • Through optimizing and improving the guide system and atomizer, the spherical TiAl alloy powders with low oxygen content and high fine powder yield were prepared by water-cooled copper crucible vacuum induction melting gas atomizing technology, using the TiAl alloy blocks as the raw materials. In the results, the graphite guide base with good thermal conductivity and the BN ceramic guide core with erosion resistance can not only ensure the heating of guide pipe, but also effectively prevent the erosion of molten metal. The spiral nozzle atomizer moves the atomization point downward, and the position of reflux area is far away from the outlet of guide pipe, which solves the problem of liquid column backflow. The spiral distribution tube can effectively restrain the atomized gas, reduce the kinetic energy loss, and significantly improve the yield of fine powders by more than 20%. The fluidity of the spherical TiAl alloy powders prepared in the experiment is 27.7 [s·(50 g)‒1], the sphericity is more than 90%, and the oxygen incremental is small, which are suitable for the 3D printing and injection molding.

  • [1]
    秦仁耀, 张国栋, 李能, 等. TiAl基合金的增材制造技术研究进展. 机械工程学报, 2021, 57(8): 115 DOI: 10.3901/JME.2021.08.115

    Qin R Y, Zhang G D, Li N, et al. Research progress on additive manufacturing of TiAl-based alloys. J Mech Eng, 2021, 57(8): 115 DOI: 10.3901/JME.2021.08.115
    [2]
    王林, 沈忱, 张弛, 等. 增材制造TiAl合金的研究现状及展望. 电焊机, 2020, 50(4): 1 DOI: 10.7512/j.issn.1001-2303.2020.04.01

    Wang L, Shen C, Zhang C, et al. Research progress and prospects of TiAl alloy produced by additive manufacturing technology. Electr Weld Mach, 2020, 50(4): 1 DOI: 10.7512/j.issn.1001-2303.2020.04.01
    [3]
    张国庆, 刘玉峰, 刘娜, 等. TiAl金属间化合物粉末冶金工艺研究进展. 航空制造技术, 2019, 62(22): 38

    Zhang G Q, Liu Y F, Liu N, et al. Progress in powder metallurgy TiAl-based intermetallics. Aeronaut Manuf Technol, 2019, 62(22): 38
    [4]
    孙世杰. 增材制造方法生产的TiAl合金零件将被应用于飞机发动机涡轮叶片. 粉末冶金工业, 2015, 25(1): 65

    Sun S J. TiAl alloy parts produced by additive manufacturing method will be used in turbine blade of aircraft engine, Powder Metall Ind, 2015, 25(1): 65
    [5]
    杜宇雷, 欧园园, 卢晓阳, 等. TiAl金属间化合物的增材制造研究进展. 徐州工程学院学报(自然科学版), 2016, 31(2): 1

    Du Y L, Ou Y Y, Lu X X, et al. Research progress on additive manufacturing of TiAl intermetallic compound. J Xuzhou Inst Technol Nat Sci, 2016, 31(2): 1
    [6]
    刘娜, 李周, 袁华, 等. 气雾化TiAl合金粉末的制备及表征. 钢铁研究学报, 2011, 23(增刊 2): 537 DOI: 10.13228/j.boyuan.issn1001-0963.2011.s2.140

    Liu N, Li Z, Yuan H, et al. Fabrication and characterization of gas atomized TiAl alloy powders. J Iron Steel Res, 2011, 23(Suppl 2): 537 DOI: 10.13228/j.boyuan.issn1001-0963.2011.s2.140
    [7]
    刘英杰, 胡强, 赵新明, 等. 增材制造用高流动性铝合金粉末制备技术研究. 稀有金属材料与工程, 2021, 50(5): 1767

    Liu Y J, Hu Q, Zhao X M, et al. Investigation of centrifugal atomization technology of high fluidity aluminium alloy powder for additive manufacturing. Rare Met Mater Eng, 2021, 50(5): 1767
    [8]
    贺卫卫, 汤慧萍, 陈斌科, 等. PREP法制备高铌TiAl粉末工艺研究及粒度预测. 钛工业进展, 2019, 36(3): 26

    He W W, Tang H P, Chen B K, et al. Study on process and particle size prediction on high-NbTiAl powder produced by PREP. Titanium Ind Prog, 2019, 36(3): 26
    [9]
    杨鑫, 奚正平, 刘咏, 等. 等离子旋转电极法制备钛铝粉末性能表征. 稀有金属材料与工程, 2010, 39(12): 2251

    Yang X, Xi Z P, Liu Y, et al. Characterization of TiAl powders prepared by plasma rotating electrode processing. Rare Met Mater Eng, 2010, 39(12): 2251
    [10]
    贺卫卫, 汤慧萍, 刘咏, 等. PREP法制备高温TiAl预合金粉末及其致密化坯体组织研究. 稀有金属材料与工程, 2014, 43(11): 2768

    He W W, Tang H P, Liu Y, et al. Preparation of high-temperature TiAI pre-alloyed powder by PREP and its densification microstructure research. Rare Met Mater Eng, 2014, 43(11): 2768
    [11]
    Yang G Y, Jia W P, Zhao P, et al. Ti‒47Al‒2Nb‒2Cr alloy produced by selective electron beam melting. Rare Met Mater Eng, 2016, 45(7): 1683 DOI: 10.1016/S1875-5372(16)30140-0
    [12]
    Li X G, Zhu Q, Shu S, et al. Fine spherical powder production during gas atomization of pressurized melts through melt nozzles with a small inner diameter. Powder Technol, 2019, 356: 759 DOI: 10.1016/j.powtec.2019.09.023
    [13]
    Lubanska H. Correction of spray ring data for gas atomization of liquid metals. JOM, 1970, 22: 45
    [14]
    董和泉, 国子明, 毛协民, 等. 低能耗节约型钛及钛合金熔炼技术的发展趋势. 材料导报, 2008, 22(5): 68 DOI: 10.3321/j.issn:1005-023X.2008.05.017

    Dong H Q, Guo Z M, Mao X M, et al. Prospect of development trend of melting technology of titanium and/or its alloys with high efficiency and low energy consumption. Mater Rev, 2008, 22(5): 68 DOI: 10.3321/j.issn:1005-023X.2008.05.017
    [15]
    陈玉勇, 韩建超, 肖树龙, 等. 稀土Y在γ-TiAl基合金及其精密热成形中应用的研究进展. 中国有色金属学报, 2014, 24(5): 1241

    Chen Y C, Han J C, Xiao S L, et al. Research progress of rare earth yttrium application in γ-TiAl based alloy and precision thermal forming. Chin J Nonferrous Met, 2014, 24(5): 1241
    [16]
    Kostov A, Friedrich B. Predicting thermodynamic stability of crucible oxides in molten titanium and titanium alloys. Compos Mater Sci, 2006, 38(2): 374 DOI: 10.1016/j.commatsci.2006.03.006
    [17]
    赵少阳, 陈刚, 谈萍, 等. 球形TC4粉末的气雾化制备、表征及间隙元素控制. 中国有色金属学报, 2016, 26(5): 980

    Zhao S Y, Chen G, Tan P, et al. Characterization of spherical TC4 powders by gas atomization and its interstitial elemental control. Chin J Nonferrous Met, 2016, 26(5): 980
    [18]
    Sadrnezhaad S K, Raz S B. Interaction between refractory crucible materials and the melted NiTi shape-memory alloy. Metall Mater Trans B, 2005, 36: 395 DOI: 10.1007/s11663-005-0068-2
    [19]
    Kartavykh A V, Tcherdyntsev V V, Zollinger J. TiAl‒Nb melt interaction with AlN refractory crucibles. Mater Chem Phys, 2009, 116(1): 300 DOI: 10.1016/j.matchemphys.2009.03.032
    [20]
    Kartavykh A V, Cherdyntsev V V. Chemical compatibility of a TiAl‒Nb melt with oxygen-free crucible ceramics made of aluminum nitride. Russ Metall, 2008, 6: 491
    [21]
    Kartavykh A V, Tcherdyntsev V V, Zollinger J. TiAl‒Nb melt interaction with pyrolytic boron nitride crucibles. Mater Chem Phys, 2010, 119(3): 347 DOI: 10.1016/j.matchemphys.2009.09.021
    [22]
    Lee E S, Ahn S. Solidification progress and heat transfer analysis of GAS-atomized alloy droplets during spray forming. Acta Metall Mater, 1994, 42(9): 3231 DOI: 10.1016/0956-7151(94)90421-9
  • Cited by

    Periodical cited type(1)

    1. 崔雷,麻洪秋,赵刚,孟令兵,关立东,冯雪峰. 改进型组合雾化工艺制备球形FeSiCr粉末. 粉末冶金技术. 2024(05): 481-488 . 本站查看

    Other cited types(0)

Catalog

    Article Metrics

    Article views (520) PDF downloads (105) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return