AdvancedSearch
ZHANG Mei, CHEN Zhipeng, LI Jiaxin, CHEN Wenchao, CHEN Pengqi. Effects of raw iron powder type on the microstructure and properties of Fe–29Ni–17Co Kovar alloys[J]. Powder Metallurgy Technology, 2024, 42(3): 234-241. DOI: 10.19591/j.cnki.cn11-1974/tf.2022030002
Citation: ZHANG Mei, CHEN Zhipeng, LI Jiaxin, CHEN Wenchao, CHEN Pengqi. Effects of raw iron powder type on the microstructure and properties of Fe–29Ni–17Co Kovar alloys[J]. Powder Metallurgy Technology, 2024, 42(3): 234-241. DOI: 10.19591/j.cnki.cn11-1974/tf.2022030002

Effects of raw iron powder type on the microstructure and properties of Fe–29Ni–17Co Kovar alloys

More Information
  • Corresponding author:

    CHEN Pengqi, E-mail: chenpq@hfut.edu.cn

  • Received Date: April 10, 2022
  • Accepted Date: April 10, 2022
  • Available Online: April 10, 2022
  • Fe–29Ni–17Co powder mixes were obtained by mixing nickels and cobalt powders, using the reduced iron powders and carbonyl iron powders as the raw materials, respectively, and the sintered Fe–29Ni–17Co Kovar alloy samples were prepared by pressing and sintering at the different temperatures. The effects of the raw iron powder type and sintering temperature on the microstructure and properties of the sintered body were investigated. The results show that the sintered samples prepared by the carbonyl iron powders have the higher relative density and the better comprehensive performance, the relative density of the sintered body sintered at 1250 ℃ is 97.51%, which is about 1.40% higher than that of the sintered body prepared by the reduced iron powders. The hardness and tensile strength of the samples prepared by the carbonyl iron powders reach HRB 84.6 and 533.8 MPa, respectively, and the thermal conductivity, average thermal expansion coefficient (20~400 ℃), and electrical resistivity are 16.45 W·m−1·K−1, 4.71×10−6 K−1, and 0.38 Ω·cm, respectively. The distribution of austenite in the sintered body obtained from the carbonyl iron powders is more uniform, the microstructure stability is better after the low temperature treatment, and the degree of martensitic transformation is lower.

  • [1]
    Sahoo A, Medicherla V R R. Fe–Ni Invar alloys: A review. Mater Today Proc, 2021, 43: 2242 DOI: 10.1016/j.matpr.2020.12.527
    [2]
    Paganotti A, Bessa C V X, Silva C C S, et al. Effect of the Ni content on the thermal and magnetic properties of Fe–Ni–Co alloys. Mater Chem Phys, 2021, 261: 124215 DOI: 10.1016/j.matchemphys.2020.124215
    [3]
    董利明, 胡显军, 于照鹏, 等. 热轧工艺对Fe–36Ni合金组织及性能的影响. 材料热处理学报, 2019, 40(8): 124

    Dong L M, Hu X J, Yu Z P, et al. Effect of hot rolling process on microstructure and properties of Fe–36Ni invar alloy. Trans Mater Heat Treat, 2019, 40(8): 124
    [4]
    郑建军, 李长生, 贺帅, 等. 一种Fe–Ni–Co合金深冷轧制过程的显微组织及力学性能. 辽宁科技大学学报, 2017, 40(1): 20

    Zheng J J, Li C S, He S, et al. Microstructure and mechanical properties of Fe–Ni–Co alloy during cryorolling. J Univ Sci Technol Liaoning, 2017, 40(1): 20
    [5]
    李波, 罗丰华, 李益民, 等. 烧结温度与时间对注射成形4J29-Kovar合金性能的影响. 粉末冶金材料科学与工程, 2017, 22(6): 747 DOI: 10.3969/j.issn.1673-0224.2017.06.006

    Li B, Luo F H, Li Y M, et al. Effects of sintering temperature and time on the properties of metal injection molding 4J29-Kovar alloy. Mater Sci Eng Powder Metall, 2017, 22(6): 747 DOI: 10.3969/j.issn.1673-0224.2017.06.006
    [6]
    段柏华, 周晓晖, 曲选辉, 等. Kovar合金注射成形工艺研究. 矿冶工程, 2004, 24(5): 70 DOI: 10.3969/j.issn.0253-6099.2004.05.020

    Duan B H, Zhou X H, Qu X H, et al. Study on powder injection molding of Kovar alloy. Min Metall Eng, 2004, 24(5): 70 DOI: 10.3969/j.issn.0253-6099.2004.05.020
    [7]
    易健宏. 粉末冶金材料. 1版. 长沙: 中南大学出版社, 2016

    Yi J H. Powder Metallurgy Material. 1nd Ed. Changsha: Central South University Press, 2016
    [8]
    袁勇, 李松林. 铁粉性能对铁基粉末冶金零件成形密度的影响 // 粉末冶金成形技术研讨会论文集. 苏州, 2011: 158

    Yuan Y, Li S L, Effect of iron powder properties on forming density of iron-based powder metallurgy parts // Symposium on Powder Metallurgy Forming Technology. Suzhou, 2011: 158
    [9]
    Xu W H, Fu C J, Zhong M, et al. Effect of type and content of iron powder on the formation of oxidized film and tribological properties of Cu-matrix composites. Mater Des, 2022, 214: 110383 DOI: 10.1016/j.matdes.2022.110383
    [10]
    包崇玺, 曹阳, 易健宏, 等. 高密度铁基粉末冶金零件制备技术. 粉末冶金技术, 2022, 40(5): 458

    Bao C X, Cao Y, Yi J H, et al. Preparation processes of high density iron-based powder metallurgy parts. Powder Metall Technol, 2022, 40(5): 458
    [11]
    Liu Y F, Wang J, Li J Y, et al. Electrical discharge approach for large-scale and high-thermostability FeCoNi Kovar alloy microwave absorbers covering the low-frequency bands. J Alloys Compd, 2022, 907: 164509 DOI: 10.1016/j.jallcom.2022.164509
    [12]
    Kim K H, Lee B T, Choi C J, Fabrication and evaluation of powder injection molded Fe–Ni sintered bodies using nano Fe–50%Ni powder. J Alloys Compd, 2010, 491(1-2): 391
    [13]
    曹光宇, 刘如铁, 党胜云, 等. 粉末活化烧结制备高性能铁基合金. 粉末冶金材料科学与工程, 2021, 26(1): 63 DOI: 10.3969/j.issn.1673-0224.2021.01.009

    Cao G Y, Liu R T, Dang S Y, et al. High performance iron-based alloy fabricated by activated powder sintering. Mater Sci Eng Powder Metall, 2021, 26(1): 63 DOI: 10.3969/j.issn.1673-0224.2021.01.009
    [14]
    黄培云. 粉末冶金原理. 2版. 北京: 冶金工业出版社, 2004

    Huang P Y. Theory of Power Metallurgy. 2nd Ed. Beijing: Metallurgical Industry Press, 2004
    [15]
    周晓晖. Kovar合金的粉末注射成形工艺研究[学位论文]. 长沙: 中南大学, 2004

    Zhou X H, Powder Injection Molding of a Kovar Alloy [Dissertation]. Changsha: Central South University, 2004
    [16]
    Hwang K S, Wu M W. The mechanisms of the formation and elimination of weak ni-rich areas in PM steels // Advances in Powder metallurgy & Particulate Materials-2007. Denver, 2007: 12
    [17]
    杨霆, 郑军妹, 刘晓刚, 等. 烧结温度对420不锈钢组织和性能的影响. 粉末冶金技术, 2016, 34(5): 373 DOI: 10.3969/j.issn.1001-3784.2016.05.010

    Yang T, Zheng J M, Liu X G, et al. Influence of sintering temperature on microstructure and properties of 420 stainless steel PM sintered body. Powder Metall Technol, 2016, 34(5): 373 DOI: 10.3969/j.issn.1001-3784.2016.05.010
    [18]
    刘文胜, 张壹金, 马运柱, 等. 烧结温度对30Cr粉末冶金低合金钢组织与性能的影响. 粉末冶金技术, 2018, 36(5): 342

    Liu W S, Zhang Y J, Ma Y Z, et al. Effect of sintering temperature on the microstructures and properties of 30Cr powder metallurgy low alloy steel. Powder Metall Technol, 2018, 36(5): 342
    [19]
    Rao Z Y, Ponge D, Körmann F, et al. Invar effects in FeNiCo medium entropy alloys: From an Invar treasure map to alloy design. Intermetallics, 2019, 111: 106520 DOI: 10.1016/j.intermet.2019.106520
    [20]
    Nagayama T, Yamamoto T, Nakamura T. Thermal expansions and mechanical properties of electrodeposited Fe–Ni alloys in the Invar composition range. Electrochim Acta, 2016, 205: 178 DOI: 10.1016/j.electacta.2016.04.089
    [21]
    Betancourt-Cantera L G, Sánchez-De Jesús F, Bolarín-Miród A M, et al. Structural analysis and magnetic characterization of ternary alloys (Co–Fe–Ni) synthesized by mechanical alloying. J Mater Res Technol, 2020, 9(6): 14969 DOI: 10.1016/j.jmrt.2020.10.068
    [22]
    Krylova K A, Bitkulov I K, Mulyukov R R. Effect of nanostructuring on the thermal expansion and saturation magnetization of Fe–36%Ni and Fe–50%Ni alloys. IOP Conf Ser Mater Sci Eng, 2020, 1008(1): 012022 DOI: 10.1088/1757-899X/1008/1/012022
    [23]
    刘红伟, 贺小龙, 杨昭, 等. 含B高导电Al–Si合金显微组织的观察与分析. 稀有金属材料与工程, 2017, 46(8): 2300

    Liu H W, He X L, Yang Z, et al. Observation and analysis of microstructure of the B-containing highly conductive Al–Si alloy. Rare Met Mater Eng, 2017, 46(8): 2300
    [24]
    白静, 郑润国. 合金固态相变. 1版. 北京: 化学工业出版社, 2019

    Bai J, Zheng R G. Solid Phase Transition of Alloy. 1nd Ed. Beijing: Chemical Industry Press, 2019
  • Related Articles

    [1]CHEN Xinyu, LI Fenqiang, JIANG Jishuai. Application and development of numerical simulation on mesoscopic analysis of powder compaction[J]. Powder Metallurgy Technology, 2024, 42(4): 418-426. DOI: 10.19591/j.cnki.cn11-1974/tf.2022050001
    [2]LI Yuhua, HE Yuxin, ZHANG Qian, ZHAO Rong, WANG Haojie, CHU Jinghui, NIU Libin. 2D and 3D finite element comparative analysis of compressive properties of porous titanium[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2024030007
    [3]LI Chang, CHEN Lei-lei, QU Zong-hong, LIU Kui-sheng, LAI Yun-jin, LIANG Shu-jin. Numerical simulation study of effect of die structure on the extrusion deformation of FGH4096 alloys[J]. Powder Metallurgy Technology, 2022, 40(3): 277-283. DOI: 10.19591/j.cnki.cn11-1974/tf.2021080014
    [4]LIANG Yuan-long, JIANG Guo-sheng. Finite element simulation of tungsten-coated diamond/copper composites[J]. Powder Metallurgy Technology, 2019, 37(4): 283-287. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.04.008
    [5]ZHANG Ming, LIU Guo-quan, HU Ben-fu, Geng Xiao-xiao, WANG Hao. Finite element simulation and experimental verification on hot extrusion of a novel nickel-base P/M superalloy[J]. Powder Metallurgy Technology, 2018, 36(3): 223-229. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.03.011
    [6]LI Yu, SHEN Wei, ZHAO Peng, PU Yu-ping. Finite element analysis for the yield strength of copper foam[J]. Powder Metallurgy Technology, 2017, 35(1): 3-9. DOI: 10.3969/j.issn.1001-3784.2017.01.001
    [7]Qiao Changchun, Wu Youzhi, Meng Junhu. Finite element analysis on the demolding process of micro-powder injection molding[J]. Powder Metallurgy Technology, 2015, 33(6): 437-444. DOI: 10.3969/j.issn.1001-3784.2015.06.007
    [8]Ma Yunzhu, Wang Jianning, Liu Wensheng, Liu Yuanbiao, Zhang Jiajia. Finite element simulation and optimization of forming process for tungsten-based alloys screw extrusion based on rigid-plastic model[J]. Powder Metallurgy Technology, 2015, 33(1): 42-48.
    [9]Wang Deguang, Wu Yucheng, Jiao Minghua, Yu Jianwei, Xie Ting, Yin Yanguo. Finite element simulation to influence of compacting mode on PM product properties[J]. Powder Metallurgy Technology, 2008, (2): 88-93.
    [10]Finite Element Analysis Model for P/M Driven Gears Deburring[J]. Powder Metallurgy Technology, 2001, 19(5): 293-296. DOI: 10.3321/j.issn:1001-3784.2001.05.011

Catalog

    Article Metrics

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return