AdvancedSearch
LIU Baixiong, HUANG Shaoyong, LIU Zhiping, ZHAO Wenmin. Controllable preparation and regulation mechanism of ultrafine spherical cobalt powders[J]. Powder Metallurgy Technology, 2024, 42(6): 609-620. DOI: 10.19591/j.cnki.cn11-1974/tf.2022090006
Citation: LIU Baixiong, HUANG Shaoyong, LIU Zhiping, ZHAO Wenmin. Controllable preparation and regulation mechanism of ultrafine spherical cobalt powders[J]. Powder Metallurgy Technology, 2024, 42(6): 609-620. DOI: 10.19591/j.cnki.cn11-1974/tf.2022090006

Controllable preparation and regulation mechanism of ultrafine spherical cobalt powders

More Information
  • Corresponding author:

    ZHAO Wenmin, E-mail: 9120220038@jxust.edu.cn

  • Received Date: September 09, 2022
  • Available Online: February 06, 2023
  • The CoCO3 precursors with fine, uniform, and controllable particle size were prepared by liquid-phase precipitation method, using CoCl2·6H2O and NH4HCO3 as raw materials, and then the ultrafine spherical cobalt powders were prepared by calcination-hydrogen reduction. The influence of stirring time and reaction temperature on the particle size and morphology of CoCO3 precursors in the liquid-phase precipitation method was analyzed, and the effect of reduction temperature and reduction time on the phase, particle size, and microstructure of the reduction products was investigated. The results show that the nucleation rate of CoCO3 precursors increases with the increase of stirring time and reaction temperature, and then the average particle size of CoCO3 decreases. The CoCO3 precursors with uniform particle size, high sphericity, and average particle size of 0.96 μm are prepared, when the stirring time is 45 min and the reaction temperature is 25 ℃. In the hydrogen reduction, the particle size of cobalt powders increases with the increase of hydrogen reduction time and temperature. When the hydrogen reduction temperature is 400 ℃ for 45 min, the cobalt powders show the good dispersion and uniform particle size with the average particle size of 0.4 μm

  • [1]
    石安红, 苏琪, 刘柏雄, 等. 废旧硬质合金高效氧化行为研究. 稀有金属, 2016, 40(11): 1138

    Shi A H, Su Q, Liu B X, et al. High efficiency oxidation behavior of waste cemented carbide. Chin J Rare Met, 2016, 40(11): 1138
    [2]
    He R G, Wang J Y, He M, et al. Synthesis of WC composite powder with nano-cobalt coatings and its application in WC−4Co cemented carbide. Ceram Int, 2018, 44(9): 10961 DOI: 10.1016/j.ceramint.2018.03.174
    [3]
    Liu X M, Zhang J L, Chao H, et al. Mechanisms of WC plastic deformation in cemented carbide. Mater Des, 2018, 150: 154 DOI: 10.1016/j.matdes.2018.04.025
    [4]
    Guo L, Xiao L R, Zhao X J, et al. Preparation of WC/Co composite powders by electroless plating. Ceram Int, 2016, 43(5): 4076
    [5]
    陈振磊, 喻琛, 邵鸣宇. 不同粘结相硬质合金的研究进展. 机械研究与应用, 2021, 34(5): 204

    Chen Z L, Yu C, Shao M Y. Research progress of cemented carbides with different bonding phases. Mech Res Appl, 2021, 34(5): 204
    [6]
    Zhan W B, Wang H B, Liang S H, et al. Acceleration effect of cobalt on carburization of tungsten at low temperature. J Alloys Compd, 2018, 732: 429
    [7]
    童国权, 王尔德, 何绍元. 粘结剂成分对WC−20(Fe/Co/Ni)硬质合金力学性能和显微组织的影响. 粉末冶金技术, 1995, 13(4): 243

    Tong G Q, Wang E D, He S Y. The influence of the binder composition on the microstructures and mechanical properties of WC−20(Fe/Co/Ni) cemented carbides. Powder Metall Technol, 1995, 13(4): 243
    [8]
    李艳, 林晨光, 曹瑞军. 超细晶WC−Co硬质合金用纳米钴粉的研究现状与展望. 稀有金属, 2011, 35(3): 451 DOI: 10.3969/j.issn.0258-7076.2011.03.023

    Li Y, Lin C G, Cao R J. Research status and prospect of nanometer cobalt powder for ultrafine crystal WC−Co hard alloys. Chin J Rare Met, 2011, 35(3): 451 DOI: 10.3969/j.issn.0258-7076.2011.03.023
    [9]
    谭兴龙, 易茂中, 罗崇玲. 球形钴粉的制备及其在超细晶粒硬质合金中的应用. 中国有色金属学报, 2008, 18(2): 209 DOI: 10.3321/j.issn:1004-0609.2008.02.003

    Tan X L, Yi M Z, Luo C L. Preparation of spherical cobalt powder and its application in ultra-fine cemented carbides. Chin J Nonferrous Met, 2008, 18(2): 209 DOI: 10.3321/j.issn:1004-0609.2008.02.003
    [10]
    Gille G, Szesnv B, Drever K, et al. Submicron and ultrafine grained hardmetals for microdrills and metal cutting inserts. Int J Refract Met Hard Mater, 2002, 20(1): 3 DOI: 10.1016/S0263-4368(01)00066-X
    [11]
    Park C, Kim J, Kang S. Effect of cobalt on the synthesis and sintering of WC−Co composite powders. J Alloys Compd, 2018, 766: 564 DOI: 10.1016/j.jallcom.2018.06.367
    [12]
    万小虎, 王朝安, 张志平, 等. 15管多管还原炉还原钴粉上、下舟还原效果分析研究. 四川冶金, 2021, 43(4): 17 DOI: 10.3969/j.issn.1001-5108.2021.04.006

    Wan X H, Wang C A, Zhang Z P, et al. Study on reduction effect of upper and lower of cobalt powder in multi-tube reduction furnace. Sichuan Metall, 2021, 43(4): 17 DOI: 10.3969/j.issn.1001-5108.2021.04.006
    [13]
    朱治军, 王朝安, 韩厚坤, 等. 过程控制对氢还原法生产钴粉性质的影响. 世界有色金属, 2020, 21: 151 DOI: 10.3969/j.issn.1002-5065.2020.21.073

    Zhu Z J, Wang C A, Han H K, et al. Effect of process control on the properties of cobalt powder produced by hydrogen reduction. World Nonferrous Met, 2020, 21: 151 DOI: 10.3969/j.issn.1002-5065.2020.21.073
    [14]
    Du H L, Wang J Z, Wang B, et al. Preparation of cobalt oxalate powders with the presence of a pulsed electromagnetic field. Powder Technol, 2010, 199(2): 149 DOI: 10.1016/j.powtec.2009.12.015
    [15]
    Yang J Q, Han B, Wang X S, et al. Synthesis of nanometer cobalt blue pigment by microemulsion method and control of diameter of particle. Trans Tianjin Univ, 2002(4): 291
    [16]
    Pérez O G, Bisang J M. Electrochemical production of cobalt powder by using a modified hydrocyclone with ultrasonic assistance. Chem Eng Process, 2021, 168: 108560
    [17]
    康红光, 李继东, 刘永鸿, 等. 超声辅助水溶液电解钴粉的实验研究. 粉末冶金工业, 2020, 30(5): 12

    Kang H G, Li J D, Liu Y H, et al. Experimental study on ultrasonic assisted electrolysis of cobalt powder in aqueous solution. Powder Metall Ind, 2020, 30(5): 12
    [18]
    步绍静, 李丹, 李世泰, 等. 溶剂热法制备超细钴粉及其机理研究. 功能材料, 2017, 48(1): 1148

    Bu S J, Li D, Li S T, et al. Preparation and mechianism of ultrafine Co particles by solvothermal method. Funct Mater, 2017, 48(1): 1148
    [19]
    吴理觉, 郭欢, 文定强, 等. 液相法制备碳酸钴及其结构表征. 有色金属(冶炼部分), 2020(1): 73

    Wu L J, Guo H, Wen D Q, et al. Preparation and structural characterization of cobalt carbonate by liquid phase method. Nonferrous Met Extract Metall, 2020(1): 73
    [20]
    李永光, 刘更好, 范伟城, 等. 液相制备高振实密度的小粒径球形碳酸钴. 电池工业, 2019, 23(2): 87 DOI: 10.3969/j.issn.1008-7923.2019.02.007

    Li Y G, Liu G H, Fan W C, et al. Preparing spherical CoCO3 with high tap density and small-size by liquid phase precipitation. Chin Battery Ind, 2019, 23(2): 87 DOI: 10.3969/j.issn.1008-7923.2019.02.007
    [21]
    黄利伟, 周传让. 草酸钴的氧化条件对氧化钴及还原钴粉性能的影响. 有色金属(冶炼部分), 2005(2): 31

    Huang L W, Zhou C R. Effect of oxidation parameter on the property of Co3O4 and reduced Co powder. Nonferrous Met Extract Metall, 2005(2): 31
    [22]
    董贵有, 韩厚坤, 王朝安, 等. 碳酸钴原料粒度对钴粉形貌影响的研究. 硬质合金, 2021, 38(5): 324 DOI: 10.3969/j.issn.1003-7292.2021.05.003

    Dong G Y, Han H K, Wang C A, et al. Study for the effect of particle size of cobalt carbonate on cobalt powder morphology. Cement Carb, 2021, 38(5): 324 DOI: 10.3969/j.issn.1003-7292.2021.05.003
    [23]
    蔡珣. 材料科学与工程基础. 2版. 上海: 上海交通大学出版社, 2017

    Cai X. Fundamentals of Materials Science and Engineering. 2nd Ed. Shanghai: Shanghai Jiao Tong University Press, 2017
    [24]
    贾志谦, 刘忠洲. 液相沉淀法制备纳米粒子的过程特征和原理. 化学工程, 2002(1): 38 DOI: 10.3969/j.issn.1005-9954.2002.01.008

    Jia Z Q, Liu Z Z. Process characteristics and principle of synthesis of nanosized particles by liquid precipitation methods. Chem Eng, 2002(1): 38 DOI: 10.3969/j.issn.1005-9954.2002.01.008
    [25]
    范瑞明, 郭春芳, 冯勋. 无机材料科学理论及其性能研究. 北京: 中国原子能出版社, 2019

    Fan R M, Guo C F, Feng X. Research on Scientific Theory and Properties of Inorganic Materials. Beijing: China Atomic Energy Press, 2019
    [26]
    龙本夫. 碳酸钴不同煅烧工艺对氧化钴相成分和形貌的影响. 福建冶金, 2018, 47(3): 39 DOI: 10.3969/j.issn.1672-7665.2018.03.013

    Long B F. Influence of different calcination phase composition and morphology of cobalt oxide. Fujian Metall, 2018, 47(3): 39 DOI: 10.3969/j.issn.1672-7665.2018.03.013
    [27]
    文平, 欧阳臻, 胡宇杰, 等. 碳酸钴分解的热力学平衡分析和试验研究. 包装学报, 2019, 11(5): 9

    Wen P, Ouyang Z, Hu Y J, et al. Thermodynamic equilibrium and experimental study on thermal decomposition of cobalt carbonate. Packag J, 2019, 11(5): 9

Catalog

    Article Metrics

    Article views (461) PDF downloads (56) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return