Citation: | YOU Liang, WANG Jian, YANG Guangyu. Microstructure and mechanical properties of W‒B alloys prepared by selective electron beam melting[J]. Powder Metallurgy Technology, 2024, 42(6): 600-608, 651. DOI: 10.19591/j.cnki.cn11-1974/tf.2022120007 |
To solve the problem of grain coarseness in pure tungsten prepared by selective electron beam melting (SEBM), B was selected as the grain refinement element. The influence of forming process parameters on the densification, microstructure, and mechanical properties of the W‒B alloys was investigated. It is found that when the electron beam current intensity is 15 mA, the scanning speed is 300 mm·s‒1, and the volume energy density is
[1] |
Tan C L, Zhou K S, Ma W Y, et al. Selective laser melting of high-performance pure tungsten: parameter design, densification behavior and mechanical properties. Sci Technol Adv Mater, 2018, 19(1): 370 DOI: 10.1080/14686996.2018.1455154
|
[2] |
Sidambe A T, Tian Y, Prangnell P B, et al. Effect of processing parameters on the densification, microstructure and crystallographic texture during the laser powder bed fusion of pure tungsten. Int J Refract Met Hard Mater, 2019, 78: 254 DOI: 10.1016/j.ijrmhm.2018.10.004
|
[3] |
Guo M, Gu D D, Xi L X, et al. Selective laser melting additive manufacturing of pure tungsten: Role of volumetric energy density on densification, microstructure and mechanical properties. Int J Refract Met Hard Mater, 2019, 84(1): 105025
|
[4] |
Yang G Y, Yang P W, Yang K, et al. Effect of processing parameters on the density, microstructure and strength of pure tungsten fabricated by selective electron beam melting. Int J Refract Met Hard Mater, 2019, 84(1): 105040
|
[5] |
Dorow-Gerspach D, Kirchner A, Loewenhoff T, et al. Additive manufacturing of high density pure tungsten by electron beam melting. Nucl Mater Energy, 2021, 28: 101046 DOI: 10.1016/j.nme.2021.101046
|
[6] |
谢琰军, 杨怀超, 王学兵, 等. 选择性激光熔化制备纯钨块体材料的研究. 粉末冶金技术, 2018, 36(2): 89
Xie Y J, Yang H C, Wang X B, et al. Study on preparation of pure tungsten bulk materials by selective laser melting. Powder Metall Technol, 2018, 36(2): 89
|
[7] |
Wang D Z, Li K L, Yu C F, et al. Cracking behavior in additively manufactured pure tungsten. Acta Metall Sin, 2019, 32: 127 DOI: 10.1007/s40195-018-0752-2
|
[8] |
Ivekovic A, Omidvari N, Vrancken B, et al. Selective laser melting of tungsten and tungsten alloys. Int J Refract Met Hard Mater, 2018, 72: 27 DOI: 10.1016/j.ijrmhm.2017.12.005
|
[9] |
Müller A V, Schlick G, Neu R, et al. Additive manufacturing of pure tungsten by means of selective laser beam melting with substrate preheating temperatures up to 1000 ℃. Nucl Mater Energy, 2019, 19: 184 DOI: 10.1016/j.nme.2019.02.034
|
[10] |
Chen J H, Li K L, Wang Y F, et al. The effect of hot isostatic pressing on thermal conductivity of additively manufactured pure tungsten. Int J Refract Met Hard Mater, 2019, 87: 105135
|
[11] |
Wang D Z, Wang Z M, Li K L, et al. Cracking in laser additively manufactured W: Initiation mechanism and a suppression approach by alloying. Mater Des, 2019, 162: 384 DOI: 10.1016/j.matdes.2018.12.010
|
[12] |
Xue J Q, Feng Z, Tang J G, et al. Selective laser melting additive manufacturing of tungsten with niobium alloying: Microstructure and suppression mechanism of microcracks. J Alloys Compd, 2021, 874(6): 159879
|
[13] |
Wang D Z, Yu C F, Zhou X, et al. Dense pure tungsten fabricated by selective laser melting. Appl Sci, 2017, 7(4): 430 DOI: 10.3390/app7040430
|
[14] |
Li K L, Wang D Z, Xing L L, et al. Crack suppression in additively manufactured tungsten by introducing secondary-phase nanoparticles into the matrix. Int J Refract Met Hard Mater, 2019, 79: 158 DOI: 10.1016/j.ijrmhm.2018.11.013
|
[15] |
Hu Z P, Zhao Y N, Guan K, et al. Pure tungsten and oxide dispersion strengthened tungsten manufactured by selective laser melting: Microstructure and cracking mechanism. Addit Manuf, 2020, 36(6): 101579
|
[16] |
Vrancken B, Ganeriwala R K, Martin A A, et al. Microcrack mitigation during laser scanning of tungsten via preheating and alloying strategies. Addit Manuf, 2021, 46: 102158
|
[17] |
Ellis E A I, Sprayberry M A, Ledford C, et al. Processing of tungsten through electron beam melting. J Nucl Mater, 2021, 555: 153041 DOI: 10.1016/j.jnucmat.2021.153041
|
[18] |
Raffo P L. Influence of Boron Additions on Physical and Mechanical Properties of Arc-Melted Tungsten and Tungsten-1 Percent Tantalum Alloy. Washington: National Aeronautics and Space Administration, 1966
|
[19] |
魏青松. 金属粉床激光增材制造技术. 北京: 化学工业出版社, 2019
Wei Q S. Laser Additive Manufacturing Technology of Metal Power Bed. Beijing: Chemical Industry Press, 2019
|
[20] |
Li K L, Chen J H, Zhao C C, et al. A review of tungsten fabricated via laser powder bed fusion. Tungsten, 2021, 3: 218 DOI: 10.1007/s42864-021-00089-3
|
[21] |
刘波. 二硼化钨粉体的硼热/碳热还原合成机理及其块体的致密化和性能研究[学位论文]. 广州: 广东工业大学, 2022
Liu B. Study on Synthesis Mechanism of Tungsten Diboride Powders and Its Densification and Properties [Dissertation]. Guangzhou: Guangdong University of Technology, 2022
|
[22] |
曹晓舟, 薛向欣, 杨合, 等. 高温固相反应合成硼化钨粉体. 稀有金属材料与工程, 2014, 43(8): 1987
Cao X Z, Xue X X, Yang H, et al. Preparation of tungsten boride powder by high-temperature solid-state reaction. Rare Met Mater Eng, 2014, 43(8): 1987
|
[23] |
Witzke W R. Effect of Alloying on Grain Refinement of Electron-Beam-Melted Tungsten. Washington: National Aeronautics and Space Administration, 1966
|
[24] |
刘波祖. 合金凝固过程枝晶生长的界面前沿跟踪法模拟[学位论文]. 济南: 山东建筑大学, 2016
Liu B Z. Simulation of Dendrite Growth During Alloy Solidification by Interfacial Frontier Tracking Method [Dissertation]. Jinan: Shandong University of Architecture and Engineering, 2016
|
[25] |
Guo B J, Zhang Y S, Yang Z S, et al. Cracking mechanism of Hastelloy X superalloy during directed energy deposition additive manufacturing. Addit Manuf, 2022, 55: 102792
|
[26] |
张敏, 徐蔼彦, 汪强, 等. Al‒4%Cu凝固过程枝晶生长的数值模拟. 材料工程, 2016, 44(6): 9 DOI: 10.11868/j.issn.1001-4381.2016.06.002
Zhang M, Xu A Y, Wang Q, et al. Numerical simulation of dendrite growth during solidification of Al‒4%Cu. J Mater Eng, 2016, 44(6): 9 DOI: 10.11868/j.issn.1001-4381.2016.06.002
|
[27] |
Lennon A M, Ramesh K T. The thermoviscoplastic response of polycrystalline tungsten in compression. Mater Sci Eng A, 2000, 276(1-2): 9 DOI: 10.1016/S0921-5093(99)00517-1
|
[28] |
Liu G Y, Ni S, Song M. Effect of indentation size and grain/sub-grain size on microhardness of high purity tungsten. Trans Nonferrous Met Soc China, 2015, 25(10): 3240 DOI: 10.1016/S1003-6326(15)63958-9
|
[29] |
Xiong Z G, Zhang P P, Tan C L, et al. Selective laser melting and remelting of pure tungsten. Adv Eng Mater, 2020, 22(3): 1901352 DOI: 10.1002/adem.201901352
|
[30] |
董文博. 钨硼化合物的高温高压合成及其物性[学位论文]. 长春: 吉林大学, 2013
Dong W B. Study on Tungsten Borides Synthesis at Pressure and High Temperature [Dissertation]. Changchun: Jilin University, 2013
|
[31] |
Xie Z M, Zhang T, Liu R, et al. Grain growth behavior and mechanical properties of zirconium micro-alloyed and nano-size zirconium carbide dispersion strengthened tungsten alloys. Int J Refract Met Hard Mater, 2015, 51: 180 DOI: 10.1016/j.ijrmhm.2015.03.019
|
[32] |
王星, 段东平, 郭昀抒. 粉末冶金制备新型钨钛合金微观组织及力学性能研究. 中国稀土学报, 2012, 30: 445
Wang X, Duan D P, Guo Y S. Microstructure and mechanical properties of new tungsten titanium alloy prepared by powder metallurgy. J Chin Soc Rare Earths, 2012, 30: 445
|
[33] |
崔忠圻, 覃耀春. 金属学与热处理. 第2版: 机械工业出版社, 2007
Cui Z Q, Tan Y C. Metallography and Heat Treatment. 2nd Ed. Beijing: China Machine Press, 2007
|
1. |
顾祥宇,林媛,曲星霖,郭玉玺,张利,李晓峰. 激光功率对激光粉末床熔融成形Fe–Mn–Al–Ni–C轻质钢组织及性能的影响. 粉末冶金技术. 2024(05): 471-480 .
![]() |