Citation: | LIANG Jiamiao, BAI Xiaochengti, XU Jiongkai, ZHANG Liang, WU Wenheng, WANG Jun. Pore structure and performance of porous GH4169 superalloys preparedby laser additive manufacturing[J]. Powder Metallurgy Technology, 2023, 41(4): 356-362, 371. DOI: 10.19591/j.cnki.cn11-1974/tf.2023010002 |
Porous GH4169 superalloy materials with the different pore structures were prepared by selective laser melting technology. The effects of pore structure on the capillary and compressive mechanical properties were investigated by scanning electron microscopy (SEM), capillary curves, and compressive stress strain curves. The results show that, the porosity of the porous superalloy specimens increases from 3.5% to 46.1% with decreasing the laser power from 285 W to 160 W. With the increase of porosity from 15.6% to 21.7%, the capillary pumping rate of the porous superalloy specimens increases from 4.44 to 6.56 mg/(s·cm3), and the capillary pumping mass decreases from 91.3 to 81.7 mg/cm3, due to the decrease of capillary force caused by the increased pore size of the porous materials. Increasing the porosity of the porous materials leads to the decrease of elastic modulus from 53 to 11 GPa and the decrease of elastic limit from 768 to 217 MPa. It also can be found that all of the porous superalloy specimens show the good resistance to the compression deformation.
[1] |
白冰鹤. 高温热管内部流动相变强化传热研究[学位论文]. 北京: 华北电力大学, 2021
Bai B H. Investigation of Heat Transfer Enhancement by Flow Phase Change in High Temperature Heat Pipe [Dissertation]. Beijing: North China Electric Power University, 2021
|
[2] |
刘冬欢, 郑小平, 王飞, 等. 内置高温热管热防护结构的传热防热机理. 清华大学学报(自然科学版), 2010, 50(7): 1094
Liu D H, Zheng X P, Wang F, et al. Heat conduction and thermal protection mechanism of heat pipe cooled thermal protection structures. J Tsinghua Univ Sci Technol, 2010, 50(7): 1094
|
[3] |
李锋. 疏导式热防护. 北京: 中国宇航出版社, 2017
Li F. Dredging Thermal Protection. Beijing: China Aerospace Press, 2017
|
[4] |
陈连忠, 欧东斌. 高温热管在热防护中应用初探. 实验流体力学, 2010, 24(1): 51 DOI: 10.3969/j.issn.1672-9897.2010.01.010
Chen L Z, Ou D B. Elementary research on the application of high temperature heat-pipe to the thermal protection. J Exp Fluid Mech, 2010, 24(1): 51 DOI: 10.3969/j.issn.1672-9897.2010.01.010
|
[5] |
丁莉, 张红, 许辉, 等. 太阳能接收器中高温热管启动性能. 南京工业大学学报(自然科学版), 2009, 31(5): 79
Ding L, Zhang H, Xu H, et al. Startup characteristics of high temperature heat pipe in solar power receiver. J Nanjing Univ Technol Nat Sci, 2009, 31(5) : 79
|
[6] |
刘逍, 田智星, 王成龙, 等. 高温热管传热特性实验研究. 核动力工程, 2020, 41(增刊1): 106
Liu X, Tian Z X, Wang C L, et al. Experimental study on heat transfer performance of high temperature potassium heat pipe. Nucl Power Eng, 2020, 41(Suppl 1): 106
|
[7] |
牛涛, 张艳苓, 侯红亮, 等. 高温热管性能分析与试验. 航空学报, 2016, 37(增刊1): S59
Niu T, Zhang Y L, Hou H L, et al. Properties of high-temperature heat pipe and tts experimental. Acta Aeronaut Astronaut Sin, 2016, 37(Suppl 1): S59
|
[8] |
于萍, 张红, 许辉, 等. 三角沟槽高温钠热管的启动性能. 南京工业大学学报(自然科学版), 2015, 37: 99
Yu P, Zhang H, Xu H, et al. Startup performance of high-temperature sodium heat pipe with triangularg groove wick. J Nanjing Univ Technol Nat Sci, 2015, 37: 99
|
[9] |
沈妍, 张红, 许辉, 等. 三角沟槽高温热管变热流传热特性. 化工学报, 2014, 65: 3830 DOI: 10.3969/j.issn.0438-1157.2014.10.012
Shen Y, Zhang H, Xu H, et al. Heat transfer characteristics of high temperature heat pipe with triangular grooved wick under variable heat fluxes. CIESC J, 2014, 65: 3830 DOI: 10.3969/j.issn.0438-1157.2014.10.012
|
[10] |
何达, 汪琳, 刘如铁, 等. 烧结铜基多孔毛细芯的孔隙特征及性能. 粉末冶金材料科学与工程, 2018, 23(4): 389 DOI: 10.3969/j.issn.1673-0224.2018.04.008
He D, Wang L, Liu R T, et al. Pore characteristic and performance of sintered copper-based porous wicks. Mater Sci Eng Powder Metall, 2018, 23(4): 389 DOI: 10.3969/j.issn.1673-0224.2018.04.008
|
[11] |
Kumar P, Wangaskar B, Khandekar S, et al. Thermal-fluidic transport characteristics of bi-porous wicks for potential loop heat pipe systems. Exp Therm Fluid Sci, 2018, 94: 355 DOI: 10.1016/j.expthermflusci.2017.12.003
|
[12] |
黎强, 甘雪萍, 李志友, 等. 多孔镍毛细芯的制备及其力学性能. 粉末冶金材料科学与工程, 2018, 23(4): 361
Li Q, Gan X P, Li Z Y, et al. Fabrication and mechanical properties of porous Ni wicks. Mater Sci Eng Powder Metall, 2018, 23(4): 361
|
[13] |
Deng D X, Tang Y, Huang G H, et al. Characterization of capillary performance of composite wicks for two-phase heat transfer devices. Int J Heat Mass Trans, 2013, 56(1-2): 283 DOI: 10.1016/j.ijheatmasstransfer.2012.09.002
|
[14] |
赵洪炯, 鲁中良, 曹继伟, 等. 定向多孔GH3536制备及其学性能. 稀有金属材料与工程, 2020, 49(5): 1694
Zhao H J, Lu Z L, Cao J W, et al. Preparation and mechanical properties of oriented porous GH3536. Rare Met Mater Eng, 2020, 49(5): 1694
|
[15] |
米国发, 刘翔宇, 李红宇, 等. Ni−Cr−Co−W−Mo−Al−Ti合金制备多孔材料的组织与性能研究. 粉末冶金技术, 2007, 25(5): 329
Mi G F, Liu X Y, Li H Y, et al. Research on the structure and mechanical properties of Ni−Cr−Co−W−Mo−Al−Ti porous superalloy. Powder Metall Technol, 2007, 25(5): 329
|
[16] |
Zhou F, Zhou Y, Jiang M, et al. Ni-based aligned plate intermetallic nanostructures as effective catalysts for hydrogen evolution reaction. Mater Lett, 2020, 272: 127831 DOI: 10.1016/j.matlet.2020.127831
|
[17] |
Jafari D, Wits W W, Geurts B J. Metal 3D-printed wick structures for heat pipe application: Capillary performance analysis. Appl Therm Eng, 2018, 143: 403 DOI: 10.1016/j.applthermaleng.2018.07.111
|
[18] |
Esarte J, Blanco J M, Bernardini A, et al. Optimizing the design of a two-phase cooling system loop heat pipe: Wick manufacturing with the 3D selective laser melting printing technique and prototype testing. Appl Therm Eng, 2017, 111: 407 DOI: 10.1016/j.applthermaleng.2016.09.123
|
[19] |
Taylor S L, Shah R N, Dunand D C. Ni−Mn−Ga micro-trusses via sintering of 3D-printed inks containing elemental powders. Acta Mater, 2018, 143: 20 DOI: 10.1016/j.actamat.2017.10.002
|
[20] |
Mooraj S, Welborn S S, Jiang S Y, et al. Three-dimensional hierarchical nanoporous copper via direct ink writing and dealloying. Scripta Mater, 2020, 177: 146 DOI: 10.1016/j.scriptamat.2019.10.013
|
[21] |
朱明, 杨骞, 王博, 等. 激光参数对旁轴送粉激光熔覆粉末熔化行为的影响. 激光与光电子学进展, 2023, 60(1): 294
Zhu M, Yang Q, Wang B, et al. Effect of laser parameters on powders melting behavior in off-axis laser cladding process. Laser Optoelectron Prog, 2023, 60(1): 294
|
[22] |
李军, 刘婷婷, 廖文和, 等. 激光选区熔化GH3536高温合金成形特征与缺陷研究. 中国激光, DOI: 10.3788/CJL221084
Li J, Liu T T, Liao W H, et al. Study on forming characteristics and defects of GH3536 superalloy by selective laser melting. Chin J Lasers, DOI: 10.3788/CJL221084
|