AdvancedSearch
Numerical calculation of sintering of 316L part printed by Binder JettingAdditive Manufacturing[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2023040012
Citation: Numerical calculation of sintering of 316L part printed by Binder JettingAdditive Manufacturing[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2023040012

Numerical calculation of sintering of 316L part printed by Binder JettingAdditive Manufacturing

More Information
  • Available Online: June 13, 2023
  • The purpose of this paper is to investigate and predict the deformation behavior during the sintering of metal parts for binder jet additive manufacturing (BJAM). A viscoplastic constitutive model is developed. The model is based on continuum media mechanics and Newtonian viscosity, and integrates the effects of grain growth factor and frictional contact between the part and substrate under gravity on sintering deformation. The parameters in the present constitutive model depend on grain size, relative density and temperature. Write umat subroutine in Abaqus using this constitutive model to simulate the sintering behavior, and the widely used 316L powder was selected for experiments. The calculated values of shrinkage deformation, etc. were compared with the experimental data, and the results showed that the constitutive model has good prediction.
  • Related Articles

    [1]CHEN Xinyu, LI Fenqiang, JIANG Jishuai. Application and development of numerical simulation on mesoscopic analysis of powder compaction[J]. Powder Metallurgy Technology, 2024, 42(4): 418-426. DOI: 10.19591/j.cnki.cn11-1974/tf.2022050001
    [2]WANG Guangda, XIONG Ning, ZHONG Ming, LIU Guohui. Numerical simulation of pure tungsten plate rolling in large size[J]. Powder Metallurgy Technology, 2023, 41(4): 315-321. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030012
    [3]LI Chang, CHEN Lei-lei, QU Zong-hong, LIU Kui-sheng, LAI Yun-jin, LIANG Shu-jin. Numerical simulation study of effect of die structure on the extrusion deformation of FGH4096 alloys[J]. Powder Metallurgy Technology, 2022, 40(3): 277-283. DOI: 10.19591/j.cnki.cn11-1974/tf.2021080014
    [4]WANG Yan, LIU Yu-meng, LIU Jiang-wei, WEI Ying-kang, ZHANG Liang-liang, WANG Jian-yong, SHANG Wei-wei, LIU Shi-feng. Research progress on numerical simulation of metal additive-manufacturing process[J]. Powder Metallurgy Technology, 2022, 40(2): 179-192. DOI: 10.19591/j.cnki.cn11-1974/tf.2021120005
    [5]HOU Cheng-long, GUO Jun-qing, CHEN Fu-xiao, HUANG Tao. Metal powder injection molding technology and numerical simulation[J]. Powder Metallurgy Technology, 2022, 40(1): 72-79. DOI: 10.19591/j.cnki.cn11-1974/tf.2020120007
    [6]YANG Dong-lin, DUAN Bo-hua, WANG De-zhi. Numerical simulation and experimental investigation on multi-directional forging of pure molybdenum[J]. Powder Metallurgy Technology, 2021, 39(3): 216-222. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030010
    [7]SHEN Xiao-ping, HUANG Yong-qiang. Optimization of powder net-shape compacting technology and structural design of 3D complex parts by numerical simulation[J]. Powder Metallurgy Technology, 2019, 37(4): 298-305. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.04.010
    [8]Li Daren, Cai Yixiang, Wang Erde. The numerical simulation of powder canning hot extrusion of W-4OCu alloy[J]. Powder Metallurgy Technology, 2012, 30(4): 266-273. DOI: 10.3969/j.issn.1001-3784.2012.04.005
    [9]Liu Ye, Qu Xuanhui, Yin Haiqing. Effect of the process parameters on alumina ceramic micro-gear injection molding in numerical simulation[J]. Powder Metallurgy Technology, 2010, 28(5): 381-386.
    [10]Chen Xiaoan, Shang Fujun, Song Shuncheng. Numerical simulation for spark plasma sintering of W powder[J]. Powder Metallurgy Technology, 2010, 28(4): 256-261.

Catalog

    Article Metrics

    Article views (124) PDF downloads (24) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return