AdvancedSearch
ZHOU Hongdeng, ZHANG Yuling, XIA Chunlin, TIAN Qingchao. Oxidation behavior of molybdenum alloy coatings at 1200 ℃[J]. Powder Metallurgy Technology, 2025, 43(1): 123-133. DOI: 10.19591/j.cnki.cn11-1974/tf.2023060008
Citation: ZHOU Hongdeng, ZHANG Yuling, XIA Chunlin, TIAN Qingchao. Oxidation behavior of molybdenum alloy coatings at 1200 ℃[J]. Powder Metallurgy Technology, 2025, 43(1): 123-133. DOI: 10.19591/j.cnki.cn11-1974/tf.2023060008

Oxidation behavior of molybdenum alloy coatings at 1200 ℃

More Information
  • Corresponding author:

    TIAN Qingchao, E-mail: tctian@shu.edu.cn

  • Received Date: October 18, 2023
  • Accepted Date: October 18, 2023
  • Available Online: October 20, 2023
  • Three different coatings A, B and C were prepared on TZC molybdenum alloy surface by coating method. The A coating contains borosilicate glass, the B coating dopes MoSi2 powder with A mass fraction of 15% on the basis of the A coating, and the C coating adds a small amount of Al powder on the basis of the B coating. The oxidation behavior of the coatings at 1200 ℃ was studied by heating furnace, X-ray diffraction analyzer and scanning electron microscope. The results show that the C coating has a good protection performance within 1 h of high temperature oxidation, and the oxidation resistance of the C coating after 2 hours is 69% higher than that without coating protection. After high temperature oxidation, the cross-section morphology of A coating and B coating is dominated by the loose structure of MoO3 and TiO2 alternately distributed. The addition of aluminum powder changes the phase composition of the oxide film, and the C coating forms a three-layer structure of the outer aluminosilicate, the middle cerium titanium oxide, the inner TiO2 and molybdenum silicon compound, which makes it have excellent oxidation resistance.

  • [1]
    付静波, 曹维成, 杨秦莉, 等. 等温锻造模具用TZM合金高温力学性能研究. 中国钼业, 2017, 41(1): 31

    Fu J B, Cao W C, Yang Q L, et al. Research on the high-temperatures mechanical behavior of TZM alloy prepared for isothermal forging die. China Molybd Ind, 2017, 41(1): 31
    [2]
    张利军, 常辉, 薛祥义. 等温锻造技术及其在航空工业中的应用. 热加工工艺, 2010, 39(21): 21 DOI: 10.3969/j.issn.1001-3814.2010.21.006

    Zhang L J, Chang H, Xue X Y. Isothermal forging technology and its application in aviation industry. Hot Work Technol, 2010, 39(21): 21 DOI: 10.3969/j.issn.1001-3814.2010.21.006
    [3]
    李青, 韩雅芳, 肖程波, 等. 等温锻造用模具材料的国内外研究发展状况. 材料导报, 2004, 18(4): 9 DOI: 10.3321/j.issn:1005-023X.2004.04.003

    Li Q, Han Y F, Xiao C B, et al. R&D status of die materials for iso-thermal forging at high temperature. Mater Rev, 2004, 18(4): 9 DOI: 10.3321/j.issn:1005-023X.2004.04.003
    [4]
    吕忠. 钼在工模具方面的应用. 钼业经济技术, 1987, 11(2): 33

    Lv Z. Molybdenum in the application of tool and mould. Molybd Ind Econ Technol, 1987, 11(2): 33
    [5]
    Lang D, Pöhl C, Holec D, et al. On the chemistry of the carbides in a molybdenum base Mo–Hf–C alloy produced by powder metallurgy. J Alloys Compd, 2016, 654: 445 DOI: 10.1016/j.jallcom.2015.09.126
    [6]
    Tang Z, Thom A J, Kramer M J, et al. Characterization and oxidation behavior of silicide coating on multiphase Mo–Si–B alloy. Intermetallics, 2008, 16(9): 1125 DOI: 10.1016/j.intermet.2008.06.014
    [7]
    Das J, Mitra R, Roy S K. Effect of Ce addition on the oxidation behaviour of Mo–Si–B–Al ultrafine composites at 1100 ℃. Scr Mater, 2011, 64(6): 486 DOI: 10.1016/j.scriptamat.2010.11.022
    [8]
    Azimovna Azim M, Burk S, Gorr B, et al. Effect of Ti (Macro-) alloying on the high-temperature oxidation behavior of ternary Mo–Si–B Alloys at 820–1, 300 ℃. Oxid Met, 2013, 80(3-4): 231 DOI: 10.1007/s11085-013-9375-1
    [9]
    Li R, Li B, Chen X, et al. Variation of phase composition of Mo–Si–B alloys induced by boron and their mechanical properties and oxidation resistance. Mater Sci Eng A, 2019, 749: 196 DOI: 10.1016/j.msea.2019.02.008
    [10]
    Zhang Y, Li Y, Bai C. Microstructure and oxidation behavior of Si–MoSi2 functionally graded coating on Mo substrate. Ceram Int, 2017, 43(8): 6250 DOI: 10.1016/j.ceramint.2017.02.024
    [11]
    Downs I P, Perepezko J H, Sakidja R, et al. Suppressing CMAS attack with a MoSiB-based coating. Surf Coat Technol, 2014, 239: 138 DOI: 10.1016/j.surfcoat.2013.11.032
    [12]
    Alam Md Z, Venkataraman B, Sarma B, et al. MoSi2 coating on Mo substrate for short-term oxidation protection in air. J Alloys Compd, 2009, 487(1-2): 335 DOI: 10.1016/j.jallcom.2009.07.141
    [13]
    Suzuki R O, Ishikawa M, Ono K. MoSi2 coating on molybdenum using molten salt. J Alloys Compd, 2000, 306(1): 285
    [14]
    Chakraborty S P, Banerjee S, Sharma I G, et al. Development of silicide coating over molybdenum based refractory alloy and its characterization. J Nucl Mater, 2010, 403(1): 152
    [15]
    Su L F, Lu-Steffes O, Zhang H, et al. An ultra-high temperature Mo–Si–B based coating for oxidation protection of NbSS/Nb5Si3 composites. Appl Surf Sci, 2015, 337: 38 DOI: 10.1016/j.apsusc.2015.02.061
    [16]
    Yoon J K, Kim G H, Han J H, et al. Low-temperature cyclic oxidation behavior of MoSi2/Si3N4 nanocomposite coating formed on Mo substrate at 773 K. Surf Coat Technol, 2005, 200(7): 2537 DOI: 10.1016/j.surfcoat.2005.01.035
    [17]
    Zhu Y T, Stan M, Conzone S D, et al. Thermal oxidation kinetics of MoSi2-based powders. J Am Ceram Soc, 1999, 82(10): 2785 DOI: 10.1111/j.1151-2916.1999.tb02156.x
    [18]
    Zhang C, Feng H, Zheng Z, et al. Preparation and corrosion behavior of the Al-modified MoSi2/Al2O3 coating on the surface of molybdenum metal core. Corros Sci, 2021, 193: 109879 DOI: 10.1016/j.corsci.2021.109879
    [19]
    Majumdar S, Sharma I G. Oxidation behavior of MoSi2 and Mo(Si, Al)2 coated Mo–0.5Ti–0.1Zr–0.02C alloy. Intermetallics, 2011, 19(4): 541
    [20]
    Zhang P, Guo X, Zhang C, et al. Deposition and oxidation behavior of Mo(Si, Al)2/MoB layered coatings on TZM alloy. Int J Refract Met H, 2017, 67: 32 DOI: 10.1016/j.ijrmhm.2017.04.008
    [21]
    Paswan S, Mitra R, Roy S K. Oxidation behaviour of the Mo–Si–B and Mo–Si–B–Al alloys in the temperature range of 700–1300 °C. Intermetallics, 2007, 15(9): 1217 DOI: 10.1016/j.intermet.2007.02.012
    [22]
    Ingemarsson L, Halvarsson M, Engkvist J, et al. Oxidation behavior of a Mo(Si, Al)2-based composite at 300–1000 ℃. Intermetallics, 2010, 18(4): 633 DOI: 10.1016/j.intermet.2009.10.019
    [23]
    Ingemarsson L, Hellström K, Johansson L G, et al. Oxidation behaviour of a Mo(Si, Al)2 based composite at 1500 ℃. Intermetallics, 2011, 19(9): 1319 DOI: 10.1016/j.intermet.2011.05.002
    [24]
    Liu Y, Shao W, Wang C, et al. Microstructure and oxidation behavior of Mo–Si–Al coating on Nb-based alloy. J Alloys Compd, 2018, 735: 2247 DOI: 10.1016/j.jallcom.2017.11.339
    [25]
    Deng X, Zhang G, Wang T, et al. Characterization and oxidation resistance of B-modified Mo3Si coating on Mo substrate. J Alloys Compd, 2019, 807: 151693 DOI: 10.1016/j.jallcom.2019.151693
    [26]
    Akinc M, Meyer M K, Kramer M J, et al. Boron-doped molybdenum silicides for structural applications. Mater Sci Eng A, 1999, 261(1-2): 16 DOI: 10.1016/S0921-5093(98)01045-4
    [27]
    Meyer M, Kramer M, Akinc M. Boron-doped molybdenum silicides. Adv Mater, 1996, 8(1): 85 DOI: 10.1002/adma.19960080118
    [28]
    Meyer M K, Thom A J, Akinc M. Oxide scale formation and isothermal oxidation behavior of Mo–Si–B intermetallics at 600–1000 ℃. Intermetallics, 1999, 7(2): 153 DOI: 10.1016/S0966-9795(98)00058-2
  • Related Articles

    [1]WANG Lei, GAO Jinchang, BAO Xiaogang, LIN Wanming, GUO Ruipeng. Effects of mechanical milling on microstructure and tensile properties of CoCrFeMnNi high-entropy alloys produced by spark plasma sintering[J]. Powder Metallurgy Technology, 2024, 42(6): 645-651. DOI: 10.19591/j.cnki.cn11-1974/tf.2023010001
    [2]ZHONG Tao, GUO Rongzhen, LIN Xiaochuan, LIU Longting, WANG Jiaxin, XU Zhiqiang, GUO Shibo. Effect of plasma sintering process on the mechanical properties of WC/Cr3C2/La2O3 cutting tool materials[J]. Powder Metallurgy Technology, 2024, 42(6): 582-588. DOI: 10.19591/j.cnki.cn11-1974/tf.2024040013
    [3]LI Yuanyuan, WU Ying, PAN Xiaoqiang, LIU Tingwei. Preparation of boron carbide stainless steel composites by spark plasma sintering[J]. Powder Metallurgy Technology, 2024, 42(4): 381-387. DOI: 10.19591/j.cnki.cn11-1974/tf.2023100003
    [4]WANG Na, WU Zhou, ZHU Qi, XI Sha, ZHANG Xiao, ZHOU Sha, LI Jing, WANG Yuqing. Preparation of Mo–Ni alloys by spark plasma sintering[J]. Powder Metallurgy Technology, 2024, 42(4): 361-366. DOI: 10.19591/j.cnki.cn11-1974/tf.2023030015
    [5]WANG Bin, CHEN Ruizhi, LI Jianfeng, CHEN Pengqi, CHENG Jigui. Preparation of binderless SiCw/WC cemented carbides by spark plasma sintering[J]. Powder Metallurgy Technology, 2023, 41(1): 38-43. DOI: 10.19591/j.cnki.cn11-1974/tf.2022050012
    [6]Fe50Mn30Co10Cr10-xNbC high-entropy alloy composites prepared by SPS technology and characterization of properties[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2023010004
    [7]YAN Xing-heng, ZHOU Xin-gui, WANG Hong-lei. Research progress of B4C prepared by spark plasma sintering[J]. Powder Metallurgy Technology, 2022, 40(6): 516-526. DOI: 10.19591/j.cnki.cn11-1974/tf.2020070001
    [8]WU Xiao-jun. Preparation parameter optimization and mechanical properties of the graphene-reinforced TC11 titanium alloys prepared by spark plasma sintering used for engine[J]. Powder Metallurgy Technology, 2022, 40(4): 291-295. DOI: 10.19591/j.cnki.cn11-1974/tf.2020110010
    [9]SHEN Dan-ni, WANG Chao-ning, GAO Peng, KONG Jian. Ultrafine grained W–Ti alloys prepared by spark plasma sintering[J]. Powder Metallurgy Technology, 2021, 39(2): 165-171. DOI: 10.19591/j.cnki.cn11-1974/tf.2019110008
    [10]DENG Lin, JIANG Li-hua. Microstructure and mechanical properties of Ti-21.5Nb alloy prepared by powder sintering used for internal combustion engine[J]. Powder Metallurgy Technology, 2020, 38(3): 201-205. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.03.006

Catalog

    Article Metrics

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return