Citation: | LUO Laima, RUAN Fangjie, YE Wei, HUANG Zhupin, ZAN Xiang, WU Yucheng. Research progress on the effects of binder and powder characteristic on the feeding properties of metal injection molding[J]. Powder Metallurgy Technology, 2025, 43(1): 1-11. DOI: 10.19591/j.cnki.cn11-1974/tf.2023120002 |
In the metal injection molding process, the metal powders need to be fully mixed with the binders to get the feeds before injection, degreasing, and sintering. The powder characteristic and binders of the feeds are the core of the metal injection molding, which have the great impact on the rheological properties and powder loading capacity of the feeds, and then affect the injection, degreasing, and sintering. Based on the optimization of binder components, the metal powder modification, and the improvement of feeding performance, the effects of binder components, additives in binders, powder shape, powder particle size, and surface modification on the rheological properties and loading capacity of the feeds were described. The additives in binders were added to improve the feed performance, including plasticizers, stabilizers, and surfactants. The addition of additives, the optimization of particle size distribution and shape, and the surface modification of the powders could significantly improve the rheological properties of the feeds, such as feed viscosity, rheological parameters, and the critical loading capacity of the powders.
[1] |
Momeni V, Alaei M H, Askari A, et al. Effect of the fraction of steel 4605 powder in the load in injection molding with the use of a polymer-based binder. Met Sci Heat Treat, 2020, 61(11-12): 777 DOI: 10.1007/s11041-020-00499-z
|
[2] |
Moon A P, Dwarapudi S, Sista K S, et al. Opportunity and challenges of iron powders for metal injection molding. ISIJ Int, 2021, 61(7): 2015 DOI: 10.2355/isijinternational.ISIJINT-2021-050
|
[3] |
Mukund B N, Hausnerova B. Variation in particle size fraction to optimize metal injection molding of water atomized 17–4PH stainless steel feedstocks. Powder Technol, 2020, 368: 130 DOI: 10.1016/j.powtec.2020.04.058
|
[4] |
Yemisci I, Mutlu O, Gulsoy N, et al. Experimentation and analysis of powder injection molded Ti10Nb10Zr alloy: a promising candidate for electrochemical and biomedical application. J Mater Res Technol, 2019, 8(6): 5233 DOI: 10.1016/j.jmrt.2019.08.046
|
[5] |
Wang B, Wang D J, Ning H W, et al. Study of NiAl-based alloy parts produced by metal injection moulding. Powder Metall, 2021, 65(1): 52
|
[6] |
Ali M, Ahmad F, Malik M R R, et al. Fabrication of high magnetic performance Fe–50Ni alloy by powder injection molding. Mater Manuf Process, 2020, 35(14): 1557 DOI: 10.1080/10426914.2020.1779945
|
[7] |
Azzouni M, Demers V, Dufresne L. Mold filling simulation and experimental investigation of metallic feedstock used in low-pressure powder injection molding. Int J Mater Form, 2021, 14(5): 961 DOI: 10.1007/s12289-021-01612-0
|
[8] |
Royer A, Barriere T, Bienvenu Y. Influence of supercritical debinding and processing parameters on final properties of injection-moulded Inconel 718. Powder Technol, 2018, 336: 311 DOI: 10.1016/j.powtec.2018.05.047
|
[9] |
Tafti A A, Demers V, Majdi S M, et al. Effect of thermal debinding conditions on the sintered density of low-pressure powder injection molded iron parts. Metals, 2021, 11(2): 264 DOI: 10.3390/met11020264
|
[10] |
Wolff M, Helmholz H, Luczak M, et al. In situ X-ray synchrotron radiation analysis, tensile- and biodegradation testing of redox-alloyed and sintered MgCa-alloy parts produced by metal injection moulding. Metals, 2022, 12(2): 353 DOI: 10.3390/met12020353
|
[11] |
Cicek B, Sun Y, Turen Y, et al. Applicability of different powder and polymer recipes in a new design powder injection molding system. J Polymer Eng, 2021, 41(4): 299 DOI: 10.1515/polyeng-2020-0263
|
[12] |
罗学全, 刘孙和, 温光华. 超细硬质合金注射成形的溶剂脱脂及脱脂临界厚度. 粉末冶金技术, 2023, 41(2): 131
Luo X Q, Liu S H, Wen G H, et al. Solvent debinding and critical thickness of ultrafine cemented carbides by prepared injection molding. Powder Metall Technol, 2023, 41(2): 131
|
[13] |
Li H W, Zhao Y P, Chen G Q, et al. Synergy of low-and high-density polyethylene in a binder system for powder injection molding of SiC ceramics. Ceram Int, 2022, 48(17): 25513 DOI: 10.1016/j.ceramint.2022.05.230
|
[14] |
Momeni V, Askari A, Alaei M H, et al. The effect of powder loading and binder system on the mechanical, rheological and microstructural properties of 4605 powder in MIM process. Trans Indian Inst Met, 2019, 72(5): 1245 DOI: 10.1007/s12666-019-01615-1
|
[15] |
Subaşı M, Safarian A, Karataş Ç. An investigation on characteristics and rheological behaviour of titanium injection moulding feedstocks with thermoplastic-based binders. Powder Metall, 2019, 62(4): 229 DOI: 10.1080/00325899.2019.1635305
|
[16] |
Gulsoy H O, Pazarlioglu S, Gulsoy N, et al. Effect of Zr, Nb and Ti addition on injection molded 316L stainless steel for bio-applications: mechanical, electrochemical and biocompatibility properties. J Mech Behav Biomed Mater, 2015, 51: 215 DOI: 10.1016/j.jmbbm.2015.07.016
|
[17] |
Abdullah N, Omar M A, Jamaludin S B, et al. Innovative metal injection molding (MIM) method for producing CoCrMo alloy metallic prosthesis for orthopedic applications. Adv Mater Res, 2014, 879: 102 DOI: 10.4028/www.scientific.net/AMR.879.102
|
[18] |
Melli V, Rondelli G, Sandrini E, et al. Metal injection molding as enabling technology for the production of metal prosthesis components: electrochemical and in vitro characterization. J Biomed Mater Res Part B, 2013, 101(7): 1294 DOI: 10.1002/jbm.b.32942
|
[19] |
Herranz G, Berges C, Naranjo J A, et al. Mechanical performance, corrosion and tribological evaluation of a Co–Cr–Mo alloy processed by MIM for biomedical applications. J Mech Behav Biomed Mater, 2020, 105: 103706 DOI: 10.1016/j.jmbbm.2020.103706
|
[20] |
Wermuth D P, Paim T C, Bertaco I, et al. Mechanical properties, in vitro and in vivo biocompatibility analysis of pure iron porous implant produced by metal injection molding: A new eco-friendly feedstock from natural rubber (Hevea brasiliensis). Mater Sci Eng C, 2021, 131: 112532 DOI: 10.1016/j.msec.2021.112532
|
[21] |
Sidambe A T, Figueroa I A, Hamilton H G C, et al. Metal injection moulding of CP–Ti components for biomedical applications. J Mater Process Technol, 2012, 212(7): 1591 DOI: 10.1016/j.jmatprotec.2012.03.001
|
[22] |
Zhang C, Pan Y, Sun J Z, et al. A net-shape forming process of Ti–6Al–4V sphere joints. Powder Metall, 2021, 64(5): 404 DOI: 10.1080/00325899.2021.1924479
|
[23] |
Liu Y J, Pan Y, Lu X, et al. Fabrication of TiAl alloys turbocharger turbine wheel for engines by metal injection molding. Powder Technol, 2021, 384: 132 DOI: 10.1016/j.powtec.2021.01.070
|
[24] |
Weise J, Lehmhus D, Sandfuchs J, et al. Syntactic iron foams’ properties tailored by means of case hardening via carburizing or carbonitriding. Materials, 2021, 14(16): 4358 DOI: 10.3390/ma14164358
|
[25] |
Tafti A A, Demers V, Vachon G, et al. Effect of binder constituents and solids loading on the rheological behavior of irregular iron-based feedstocks. J Manuf Sci Eng, 2021, 143(3): 031002 DOI: 10.1115/1.4048268
|
[26] |
Wen G A, Cao P, Gabbitas B, et al. Development and design of binder systems for titanium metal injection molding: an overview. Metall Mater Trans A, 2012, 44(3): 1530
|
[27] |
Enneti R K, Onbattuvelli V P, Atre S V. Powder binder formulation and compound manufacture in metal injection molding (MIM) // Handbook of Metal Injection Molding. Cambridge: Woodhead Publishing Limited, 2012: 64
|
[28] |
尤力, 刘艳军, 潘宇, 等. 粉末注射成形钛合金粘结剂体系的研究进展. 粉末冶金技术, 2021, 39(6): 563
You L, Liu Y J, Pan Y, et al. Research progress of titanium alloy bonder system for powder injection molding. Powder Metall Technol, 2021, 39(6): 563
|
[29] |
Omar M A, Ibrahim R, Sidik M I, et al. Rapid debinding of 316L stainless steel injection moulded component. J Mater Process Technol, 2003, 140(1-3): 397 DOI: 10.1016/S0924-0136(03)00772-6
|
[30] |
Zhang C, Pan Y, Zhang S H, et al. Microstructure and mechanical properties of gamma titanium aluminide alloys fabricated by metal injection molding using non-spherical powder. Int J Adv Manuf Technol, 2023, 125(11-12): 5733 DOI: 10.1007/s00170-023-11063-3
|
[31] |
Zhao X W, Ye L, Hu Y L. Synthesis of melamine-formaldehyde polycondensates as the thermal stabilizer of polyoxymethylene through ultrasonic irradiation. Polym Adv Technol, 2008, 19(5): 399 DOI: 10.1002/pat.1023
|
[32] |
Scott W K, Nyberg E, Simmons K. A new binder for powder injection molding titanium and other reactive metals. J Mater Process Technol, 2006, 176(1-3): 205 DOI: 10.1016/j.jmatprotec.2006.03.154
|
[33] |
Zhang H Z, Hayat M D, Zhang W, et al. Improving an easy-to-debind PEG/PPC/PMMA-based binder. Polymer, 2022, 262: 125465 DOI: 10.1016/j.polymer.2022.125465
|
[34] |
Hayat M D, Cao P. A new lubricant based binder system for feedstock formulation from HDH-Ti powder. Adv Powder Technol, 2016, 27(1): 255 DOI: 10.1016/j.apt.2015.12.017
|
[35] |
Hausnerova B, Novak M. Environmentally efficient 316L stainless steel feedstocks for powder injection molding. Polymers, 2020, 12(6): 1296 DOI: 10.3390/polym12061296
|
[36] |
Hidalgo J, Fernández-Blázquez J P, Jiménez-Morales A, et al. Effect of the particle size and solids volume fraction on the thermal degradation behaviour of Invar 36 feedstocks. Polym Degrad Stab, 2013, 98(12): 2546 DOI: 10.1016/j.polymdegradstab.2013.09.015
|
[37] |
Wen J X, Xie Z P, Cao W B. Novel fabrication of more homogeneous water-soluble binder system feedstock by surface modification of oleic acid. Ceram Int, 2016, 42(14): 15530 DOI: 10.1016/j.ceramint.2016.06.206
|
[38] |
Hayat M D, Wen G A, Zulkifli M F, et al. Effect of PEG molecular weight on rheological properties of Ti-MIM feedstocks and water debinding behaviour. Powder Technol, 2015, 270: 296 DOI: 10.1016/j.powtec.2014.10.035
|
[39] |
Abolhasani H, Muhamad N. A new starch-based binder for metal injection molding. J Mater Process Technol, 2010, 210(6-7): 961 DOI: 10.1016/j.jmatprotec.2010.02.008
|
[40] |
Kan X F, Yang D C, Zhao Z Z, et al. 316L FFF binder development and debinding optimization. Mater Res Express, 2021, 8(11): 116515 DOI: 10.1088/2053-1591/ac3b15
|
[41] |
Momeni V, Hossein A M, Askari A, et al. Effect of carnauba wax as a part of feedstock on the mechanical behavior of a part made of 4605 low alloy steel powder using metal injection molding. Materialwiss Werkstofftech, 2019, 50(4): 432 DOI: 10.1002/mawe.201800090
|
[42] |
Ali M, Ahmad F, Melor P S, et al. Binder removal by a two-stage debinding process for powder injection molding Fe–50Ni alloy parts. Mater Res Express, 2019, 6(8): 0865e3 DOI: 10.1088/2053-1591/ab239b
|
[43] |
Rolere S, Soupremanien U, Bohnke M, et al. New insights on the porous network created during solvent debinding of powder injection-molded (PIM) parts, and its influence on the thermal debinding efficiency. J Mater Process Technol, 2021, 295: 117163 DOI: 10.1016/j.jmatprotec.2021.117163
|
[44] |
Ouyang M L, Wang C P, Zhang H Y, et al. Effects of bonding treatment and ball milling on W–20 wt.% Cu composite powder for injection molding. Materials, 2021, 14(8): 1897
|
[45] |
Askari A, Momeni V. Rheological investigation and injection optimization of Fe–2Ni–2Cu feedstock for metal injection molding process. Mater Chem Phys, 2021, 271: 124926 DOI: 10.1016/j.matchemphys.2021.124926
|
[46] |
Jiang X Q, Li D X, Lu R W, et al. Study of hyperbranched polymer on POM-based binder in metal injection molding. Mater Res Express, 2020, 6(12): 125377 DOI: 10.1088/2053-1591/ab79d0
|
[47] |
Yu K P, Ye S L, Mo W, et al. Oxygen content control in metal injection molding of 316L austenitic stainless steel using water atomized powder. J Manuf Process, 2020, 50: 498 DOI: 10.1016/j.jmapro.2019.12.038
|
[48] |
Zhang Y Y, Feng E S, Mo W, et al. On the microstructures and fatigue behaviors of 316L stainless steel metal injection molded with gas- and water-atomized powders. Metals, 2018, 8(11): 893 DOI: 10.3390/met8110893
|
[49] |
Standring T, Blackburn S, Wilson P. Investigation into paraffin wax and ethylene vinyl acetate blends for use as a carrier vehicle in ceramic injection molding. Polym Plast Technol Eng, 2016, 55(8): 802 DOI: 10.1080/03602559.2015.1132434
|
[50] |
Momeni V, Askari A, Allaei M H, et al. Investigating the effect of stearic acid on the mechanical, rheological, and microstructural properties of AISI 4605 feedstock for metal injection molding process. Trans Indian Inst Met, 2021, 74(9): 2161 DOI: 10.1007/s12666-021-02282-x
|
[51] |
Patti A, Lecocq H, Serghei A, et al. The universal usefulness of stearic acid as surface modifier: applications to the polymer formulations and composite processing. J Ind Eng Chem, 2021, 96: 1 DOI: 10.1016/j.jiec.2021.01.024
|
[52] |
袁建坤, 杨宇, 陈鹏起, 等. 微晶蜡基 WC–10Co 注射成形喂料的流变性能及溶剂脱脂行为. 粉末冶金技术, 2022, 40(5): 413
Yuan J K, Yang Y, Chen P Q, et al. Rheological properties and solvent degreasing behavior of microcrystalline wax-based WC–10Co injection molding feeds. Powder Metall Technol, 2022, 40(5): 413
|
[53] |
Romero A, Herranz G. Development of feedstocks based on steel matrix composites for metal injection moulding. Powder Technol, 2017, 308: 472 DOI: 10.1016/j.powtec.2016.12.055
|
[54] |
Ali M, Ahmad F. Influence of powder loading on rheology and injection molding of Fe–50Ni feedstocks. Mater Manuf Process, 2020, 35(5): 579 DOI: 10.1080/10426914.2020.1734616
|
[55] |
Islam S T, Samanta S K, Das S, et al. A numerical model to predict the powder-binder separation during micro-powder injection molding. J Am Ceram Soc, 2022, 105(7): 4608 DOI: 10.1111/jace.18401
|
[56] |
Côté R, Azzouni M, Demers V. Impact of binder constituents on the moldability of titanium-based feedstocks used in low-pressure powder injection molding. Powder Technol, 2021, 381: 255 DOI: 10.1016/j.powtec.2020.12.008
|
[57] |
Huang Z, Qiao X Y, Ding C X, et al. Study of polytetrahydrofuran on polyoxymethylene-based binder in metal injection molding. Trans Indian Inst Met, 2022, 75(9): 2265 DOI: 10.1007/s12666-022-02601-w
|
[58] |
Sotomayor M E, Levenfeld B, Várez A. Powder injection moulding of premixed ferritic and austenitic stainless steel powders. Mater Sci Eng A, 2011, 528(9): 3480 DOI: 10.1016/j.msea.2011.01.038
|
[59] |
Lim K, Hayat M D, Jena K D, et al. Interactions of polymeric components in a POM-based binder system for titanium metal injection moulding feedstocks. Powder Metall, 2023, 66(4): 355 DOI: 10.1080/00325899.2023.2194478
|
[60] |
Choi J P, Lyu H G, Lee W S, et al. Investigation of the rheological behavior of 316L stainless steel micro-nano powder feedstock for micro powder injection molding. Powder Technol, 2014, 261: 201 DOI: 10.1016/j.powtec.2014.04.047
|
[61] |
Langlais D, Demers V, Brailovski V. Rheology of dry powders and metal injection molding feedstocks formulated on their base. Powder Technol, 2022, 396: 13 DOI: 10.1016/j.powtec.2021.10.039
|
[62] |
Krinitcyn M, Pervikov A, Kochuev D, et al. Powder injection molding of Ti–Al–W nano/micro bimodal powders: structure, phase composition and oxidation kinetics. Metals, 2022, 12(8): 1357 DOI: 10.3390/met12081357
|
[63] |
Mahmud N N, Abdul Azam F A, Ramli M I, et al. Rheological properties of irregular-shaped titanium-hydroxyapatite bimodal powder composite moulded by powder injection moulding. J Mater Res Technol, 2021, 11: 2255 DOI: 10.1016/j.jmrt.2021.02.016
|
[64] |
Gal C W, Shin D S, Lee C, et al. Rheological behavior of water-atomized 316L stainless steel powder depending on particle size. Met Mater Int, 2023, 29: 3329 DOI: 10.1007/s12540-023-01441-7
|
[65] |
Sanetrnik D, Hausnerova B, Novak M, et al. Effect of particle size and shape on wall slip of highly filled powder feedstocks for material extrusion and powder injection molding. 3D Print Addit Manuf, 2023, 10(2): 236 DOI: 10.1089/3dp.2021.0157
|
[66] |
Oh J W, Park J M, Shin D S, et al. Comparative study of nanoparticle effects on feedstock behavior for injection molding. Mater Manuf Proc, 2019, 34(4): 414 DOI: 10.1080/10426914.2018.1544709
|
[67] |
Park S, Kim D, Lin D, et al. Rheological characterization of powder mixture including a space holder and its application to metal injection molding. Metals, 2017, 7(4): 120 DOI: 10.3390/met7040120
|
[68] |
Kong X, Barriere T, Gelin J C. Determination of critical and optimal powder loadings for 316L fine stainless steel feedstocks for micro-powder injection molding. J Mater Process Technol, 2012, 212(11): 2173 DOI: 10.1016/j.jmatprotec.2012.05.023
|
[69] |
Raza M R, Ahmad F, Omar M A, et al. Effects of cooling rate on mechanical properties and corrosion resistance of vacuum sintered powder injection molded 316L stainless steel. J Mater Process Technol, 2012, 212(1): 164 DOI: 10.1016/j.jmatprotec.2011.08.019
|
[70] |
Choi J P, Lee G Y, Song J I, et al. Sintering behavior of 316L stainless steel micro-nanopowder compact fabricated by powder injection molding. Powder Technol, 2015, 279: 196 DOI: 10.1016/j.powtec.2015.04.014
|
[71] |
Li Y, Li L, Khalil K A. Effect of powder loading on metal injection molding stainless steels. J Mater Process Technol, 2007, 183(2-3): 432 DOI: 10.1016/j.jmatprotec.2006.10.039
|
[72] |
Majdi S M, Tafti A A, Demers V, et al. Effect of powder particle shape and size distributions on the properties of low-viscosity iron-based feedstocks used in low-pressure powder injection moulding. Powder Metall, 2021, 65(2): 170
|
[73] |
Ouyang M L, Xu L S, Zhang Q, et al. Effects of jet milling on W–10wt.%Cu composite powder for injection molding. J Mater Res Technol, 2020, 9(4): 8535
|
[74] |
Fayyaz A, Muhamad N, Sulong A B, et al. Micro-powder injection molding of cemented tungsten carbide: feedstock preparation and properties. Ceram Int, 2015, 41(3): 3605 DOI: 10.1016/j.ceramint.2014.11.022
|
[75] |
高春萍, 罗铁钢, 刘胜林, 等. 粉末注射成形钛合金的脱脂和烧结性能. 粉末冶金技术, 2021, 39(5): 410
Gao C P, Luo T G, Liu S L, et al. Debinding and sintering properties of powder-shot titanium alloys. Powder Metall Technol, 2021, 39(5): 410
|
[76] |
Hu F, Liu W, Xie Z P. Surface modification of alumina powder particles through stearic acid for the fabrication of translucent alumina ceramics by injection molding. Ceram Int, 2016, 42(14): 16274 DOI: 10.1016/j.ceramint.2016.07.164
|
[77] |
Chen G M, Ma H H, Zhou Z F, et al. Effect of interaction from the reaction of carboxyl/epoxy hyperbranched polyesters on properties of feedstocks for metal injection molding. Mater Res Express, 2022, 9(1): 016506 DOI: 10.1088/2053-1591/ac46e5
|
[78] |
陈泽旭, 吴盾, 刘春林, 等. 表面处理对316L不锈钢粉末注射成型性能的影响. 粉末冶金技术, 2023, 41(4): 289
Chen Z X, Wu D, Liu C L, et al. Effect of surface treatment on the performance of 316L stainless steel powder injection molding. Powder Metall Technol, 2023, 41(4): 289
|