AdvancedSearch
LI Haiying, MIAO Tianyue, LIU Jikai, XUE Hairui, LI Guoliang. Numerical simulation of multi-field collaborative processing technology for sintering ultrafine dust[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2024020002
Citation: LI Haiying, MIAO Tianyue, LIU Jikai, XUE Hairui, LI Guoliang. Numerical simulation of multi-field collaborative processing technology for sintering ultrafine dust[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2024020002

Numerical simulation of multi-field collaborative processing technology for sintering ultrafine dust

More Information
  • Corresponding author:

    MIAO Tianyue, E-mail: 1004699313@qq.com

  • Received Date: September 05, 2024
  • Accepted Date: September 05, 2024
  • Available Online: September 05, 2024
  • A new type of multi-field collaborative processing technology that couples phase change aggregation and turbulent aggregation has been proposed to address the problem of low efficiency in the treatment of sintering flue gas ultrafine dust. By using numerical simulation methods, the aggregation behavior of sintering ultrafine dust under multi-field effects and the influence of its evolution parameters on aggregation efficiency were thoroughly investigated. The research results show that a lower inlet velocity can significantly improve the aggregation efficiency, as evidenced by a decrease in the average particle size of sintering ultrafine dust and an increase in the number density of large particle dust at the outlet. When the inlet velocity is 2 m·s-1, the average particle size is 16.1 μm, and the number density of large particle dust at the outlet is 5.08 × 104 particles·cm-3. Although an increase in initial volume fraction is not conducive to dust growth, it is directly proportional to the number density of large particle dust at the outlet. When the volume fraction is 0.0023, the average particle size is the largest, at 19.8 μm, and when the volume fraction is 0.0062, the number density of large particle dust is the highest, reaching 7.4×104 particles·cm-3. This indicates that a higher volume fraction is beneficial for dust treatment. An increase in the initial particle size of the dust will lead to a decrease in its final particle size density, which is inversely proportional to the number density of large particle dust at the outlet. When the initial particle size is 0.78, the final particle size is the smallest, at 38.9 μm, but the outlet density is the highest, at 8.17×104 particles·cm-3. This indicates that a smaller initial particle size is more conducive to the effectiveness of the collaborative processing technology.

  • [1]
    王广, 张宏强, 苏步新, 等. 我国钢铁工业碳排放现状与降碳展望. 化工矿物与加工, 2021, 50(12): 55

    Wang G, Zhang H Q, Su B X, et al. The current situation of carbon emission and carbon reduction in Chinese steel industry. Ind Min Process, 2021, 50(12): 55
    [2]
    Zhou D, Luo Z Y, Fang M X, et al. Preliminary experimental study of acoustic agglomeration of coal-fired fine particles. Procedia Eng, 2015, 102: 1261 DOI: 10.1016/j.proeng.2015.01.256
    [3]
    闫伯骏, 邢奕, 路培, 等. 钢铁行业烧结烟气多污染物协同净化技术研究进展. 工程科学学报, 2018, 40(7): 767

    Yan B J, Xing Y, Lu P, et al. A critical review on the research progress of multi-pollutant collaborative control technologies of sintering flue gas in the iron and steel industry. Chin J Eng, 2018, 40(7): 767
    [4]
    Zhang G X, Wang J Q, Chi Z H, et al. Acoustic agglomeration with addition of sprayed liquid droplets: Three-dimensional discrete element modeling and experimental verification. Chem Eng Sci, 2018, 187: 342 DOI: 10.1016/j.ces.2018.05.012
    [5]
    Luo Z Y, Chen H, Wang T, et al. Agglomeration and capture of fine particles in the coupling effect of pulsed corona discharge and acoustic wave enhanced by spray droplets. Powder Technol, 2017, 312: 21 DOI: 10.1016/j.powtec.2017.02.025
    [6]
    林伟强. 声场联合超声波水雾强化过滤式除尘性能的研究[学位论文]. 天津: 天津大学, 2014

    Lin W Q. Intensification of Acoustic Agglomeration and Ultrasonic Atomization on Behavior of Fine Dust in Air Filtration Process [Dissertation]. Tianjin: Tianjin University, 2014
    [7]
    Yan J P, Chen L Q, Yang L J. Combined effect of acoustic agglomeration and vapor condensation on fine particles removal. Chem Eng J, 2016, 290: 319 DOI: 10.1016/j.cej.2016.01.075
    [8]
    Li K, Wang E L, Wang Q, et al. Improving the removal of inhalable particles by combining flue gas condensation and acoustic agglomeration. J Clean Product, 2020, 261: 121270 DOI: 10.1016/j.jclepro.2020.121270
    [9]
    Yan J P, Chen L Q, Lin Q. Removal of fine particles in WFGD system using the simultaneous acoustic agglomeration and supersaturated vapor condensation. Powder Technol, 2017, 315: 106 DOI: 10.1016/j.powtec.2017.03.056
    [10]
    赫明春. 多场协同作用下细颗粒物团聚和脱除研究[学位论文]. 杭州: 浙江大学, 2020

    He M C. Study on The Agglomeration and Removal of Fine Particles in Multiple Fields [Dissertation]. Hangzhou: Zhejiang University, 2020
    [11]
    Sun Z K, Yang L J, Chen S, et al. Promoting the removal of fine particles and zero discharge of desulfurization wastewater by spray-turbulent agglomeration. Fuel, 2020, 270: 117461 DOI: 10.1016/j.fuel.2020.117461
    [12]
    米行, 王春波. 蒸汽在PM表面凝结的紊流布朗核聚并理论与数值模拟. 中国电机工程学报, 2018, 38(17): 5126

    Mi X, Wang C B. Theory of aggregation kernel of turbulence and Brown synergizing vapor condensing on the surface of PM and its numerical simulation. Proceed CSEE, 2018, 38(17): 5126
    [13]
    Saffman P G, Turner J S. On the collision of drops in turbulent clouds. J Fluid Mech, 1956, 1(1): 16 DOI: 10.1017/S0022112056000020
    [14]
    郑建祥, 许帅, 王京阳. 超细颗粒聚团模型及湍流聚并器聚团研究. 中国电机工程学报, 2016, 36(16): 4389

    Zheng J X, Xu S, Wang J Y. Simulation study of ultrafine particle aggregation models and agglomerator coagulation. Proceed CSEE, 2016, 36(16): 4389
    [15]
    Qian F P, Huang N J, Zhu X J, et al. Numerical study of the gas-solid flow characteristic of fibrous media based on SEM using CFD-DEM. Powder Technol, 2013, 249: 63 DOI: 10.1016/j.powtec.2013.07.030
    [16]
    赵海波, 郑楚光. 离散系统动力学演变过程的颗粒群平衡模拟. 北京: 科学出版社, 2008

    Zhao H B, Zheng C G. Particle Group Equilibrium Simulation for Dynamic Evolution of discrete Systems. Beijing: Science Press, 2008
    [17]
    张宇萌. 颗粒成核长大过程及其强化手段对CAP技术除尘效率的影响机理[学位论文]. 兰州: 兰州大学, 2021

    Zhang Y M. Effect of Nucleation and Growth Process of Particles and Its Strengthening Means on Separation Performance of Cloud-Air-Purifying Technology [Dissertation]. Lanzhou: Lanzhou university, 2021
    [18]
    梅涛, 李阳, 杨历, 等. 蒸汽相变促进烟气中细颗粒生长的数值模拟. 河北工业大学学报, 2019, 13(3): 27

    Mei T, Li Y, Yang L, et al. Numerical simulation of fine particles in flue gas by using of vapor phase change. J Hebei Univ Technol, 2019, 13(3): 27
  • Related Articles

    [1]SHU chen, XU Qiang, LIU Yi-bo, YANG Zhiwei, KOU Shengzhong, CAO Rui. Investigation on microstructure and performance of sintered matrix and diamond saw blades welded by laser under different transition layer component[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2023110005
    [2]WANG Lei, GAO Jinchang, BAO Xiaogang, LIN Wanming, GUO Ruipeng. Effects of mechanical milling on microstructure and tensile properties of CoCrFeMnNi high-entropy alloys produced by spark plasma sintering[J]. Powder Metallurgy Technology, 2024, 42(6): 645-651. DOI: 10.19591/j.cnki.cn11-1974/tf.2023010001
    [3]XU Hongyang, LU Jinbin, PENG Xuan, MA Mingxing, MENG Wenlu, LI Hongzhe. Microstructure and phase stability analysis of laser cladding CoCrCu0.4FeNi high entropy alloy coatings[J]. Powder Metallurgy Technology, 2024, 42(3): 320-330. DOI: 10.19591/j.cnki.cn11-1974/tf.2022020003
    [4]LIU Yiran, LI Lei, LI Xiaodong. Effect of shot peening on surface mechanical properties of selective laser melting TC4 titanium alloy[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2024010008
    [5]LI Xin-xing, WANG Hong-xia, SHI Jian-feng, HAN Yu-yang, JIANG Qiu-tong, LIU Yuan. Microstructure and properties of Ni-based alloy coatings on steel surface by sintering cladding[J]. Powder Metallurgy Technology, 2022, 40(3): 245-250. DOI: 10.19591/j.cnki.cn11-1974/tf.2020010001
    [6]CHEN Peng-qi, TAI Yun-xiao, CHENG Ji-gui. Study on the sintering properties of Mo–La2O3 nano-powders prepared by solution combustion method[J]. Powder Metallurgy Technology, 2021, 39(3): 203-208. DOI: 10.19591/j.cnki.cn11-1974/tf.2021020009
    [7]LIANG Jia-miao, WANG Li-min, HE Wei, TANG Chao, WU Xi-mao, WANG Jun. Effect of milling time on microstructures and hardness of nanocrystalline Al-7Si-0.3Mg alloy powders[J]. Powder Metallurgy Technology, 2019, 37(5): 373-381,391. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.05.009
    [8]WANG Da-peng, MU Yun-chao, CHENG Xiao-zhe, ZHANG Wu-qi. Effects of raw material ratio on the properties of molybdenum carbide prepared by spark plasma sintering method[J]. Powder Metallurgy Technology, 2018, 36(1): 31-35. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.01.006
    [9]WANG Qing-xiang, WANG Jun-long. Study on the interdiffusion of W–Ti alloy and β phase stability[J]. Powder Metallurgy Technology, 2018, 36(1): 3-8. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.01.001
    [10]Guo Yang, Liu Zuming, Su Pengfei, Ma Mengmei, Duan Ranxi, Wang Shuai. Microstructure and mechanical properties of nitride dispersion strengthened ferrite-based alloy[J]. Powder Metallurgy Technology, 2016, 34(5): 361-367. DOI: 10.3969/j.issn.1001-3784.2016.05.008

Catalog

    Article Metrics

    Article views (58) PDF downloads (4) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return