Citation: | YIN Gang, PAN Qian, ZHAO Teng, YIN Haiqing, WANG Yongwei, QU Xuanhui, XIONG Ning. Prediction of thermal conductivity of 93W–Ni–Fe alloys in sintering process based on finite element analysis[J]. Powder Metallurgy Technology, 2025, 43(1): 52-60. DOI: 10.19591/j.cnki.cn11-1974/tf.2024020007 |
Thermal conductivity is an important thermophysical parameter required for the numerical simulation of constitutive equations. The existing thermal conductivity measurement equipment and methods cannot measure the thermal conductivity of refractory metals during high temperature sintering. Based on the prediction model of 93W–Ni–Fe refractory metals with the PixelMapPaint method, the thermal conductivity of 93W–Ni–Fe alloy billets formed by cold isostatic pressing was predicted at different temperatures during the sintering process, and the thermal conductivity was verified by laser flash method. The results show that, when the sintering temperature is
[1] |
王承阳, 刘洁, 孙艳艳, 等. 退火温度对钨铼合金组织和性能的影响. 粉末冶金技术, 2023, 41(6): 523
Wang C Y, Liu J, Sun Y Y, et al. Effect of annealing temperature on microstructure and properties of tungsten-rhenium alloys. Powder Metall Technol, 2023, 41(6): 523
|
[2] |
王承阳, 滕宇阔, 董帝, 等. Mo–30W钼合金棒材再结晶行为研究. 粉末冶金技术, 2018, 36(6): 418
Wang C Y, Teng Y K, Dong D, et al. Study on recrystallization behavior of Mo–30W molybdenum alloy. Powder Metall Technol, 2018, 36(6): 418
|
[3] |
Cheng F F, Hu L F, Reddy J N, et al. Temperature-dependent thermal properties of a shape memory alloy/MAX phase composite: Experiments and modeling. Acta Mater, 2014, 68: 267 DOI: 10.1016/j.actamat.2013.12.014
|
[4] |
任一鹏, 李建保, 余辉, 等. Si3N4/BN复合陶瓷热导率及其有限元分析. 陶瓷学报, 2020, 41(5): 708
Ren Y P, Li J B, Yu H, et al. Thermal conductivity and finite element analysis of Si3N4/BN composite ceramics. J Ceram, 2020, 41(5): 708
|
[5] |
Akinwekomi A D, Yeung K W, Tang C Y, et al. Finite element simulation of hybrid microwave sintering based on power approach. Int J Adv Manuf Technol, 2020, 110(9): 2503
|
[6] |
Bhoi N K, Patel D K, Singh H, et al. Multi-physics simulation study of microwave hybrid sintering of aluminium and mechanical characteristics. Proc Inst Mech Eng Part E, 2022, 236(5): 1779 DOI: 10.1177/09544089221074829
|
[7] |
Qin R X, Wang Q P, Wang Q P, et al. Research and numerical simulation of thermal conductivity of SiCp/6061Al composite fabricated by pressureless infiltration. Mater Res Express, 2019, 6(1): 016525
|
[8] |
Yan B J, Gao R, Liu P C, et al. Optimization of thermal conductivity of UO2–Mo composite with continuous Mo channel based on finite element method and machine learning. Int J Heat Mass Transfer, 2020, 159: 120067 DOI: 10.1016/j.ijheatmasstransfer.2020.120067
|
[9] |
Yan B J, Cheng L, Li B B, et al. Bi-directional prediction of structural characteristics and effective thermal conductivities of composite fuels through learning from finite element simulation results. Mater Des, 2020, 189: 108483 DOI: 10.1016/j.matdes.2020.108483
|
[10] |
Bergman T L, Lavine A S, Incropera F P, et al. Fundamentals of Heat and Mass Transfer. 8th Ed. New York: John Wiley & Sons, 2011
|
[11] |
Hamidi A G, Arabi H, Khaki J V. Sintering of a nano-crystalline tungsten heavy alloy powder. Int J Refract Met Hard Mater, 2019, 80: 204 DOI: 10.1016/j.ijrmhm.2019.01.016
|
[12] |
Ding L, Xiang D P, Li Y Y, et al. Effects of sintering temperature on fine-grained tungsten heavy alloy produced by high-energy ball milling assisted spark plasma sintering. Int J Refract Met Hard Mater, 2012, 33: 65 DOI: 10.1016/j.ijrmhm.2012.02.017
|
[13] |
Semenova E. Fe–Ni–W Ternary Phase Diagram Evaluation. Stuttgart: Materials Science International Services GmbH, 2008
|
[14] |
Zhang Z W, Zhou J E, Xi S Q, et al. Phase transformation and thermal stability of mechanically alloyed W–Ni–Fe composite materials. Mater Sci Eng A, 2004, 379(1): 148
|
[15] |
Chausse C, Nardou F. Solid phase diffusion of tungsten in liquid phase sintering // Proceedings of 1994 Powder Metallurgy World Congress. Paris, 1994: 1545
|
[16] |
Montes J M, Rodríguez J A, Herrera E J. Thermal and electrical conductivities of sintered powder compacts. Powder Metall, 2003, 46(3): 251 DOI: 10.1179/003258903225008544
|
[17] |
Bhattacharya A, Calmidi V V, Mahajan R L. Thermophysical properties of high porosity metal foams. Int J Heat Mass Transfer, 2002, 45(5): 1017 DOI: 10.1016/S0017-9310(01)00220-4
|
[18] |
Fricke H. A mathematical treatment of the electric conductivity and capacity of disperse systems I. The electric conductivity of a suspension of homogeneous spheroids. Phys Rev, 1924, 24(5): 575
|