AdvancedSearch
ZHANG Chen, BAO Chongxi. Effect of brazing material pretreatment and sintering atmosphere on sinter-brazing of iron based powder metallurgy parts[J]. Powder Metallurgy Technology, 2024, 42(5): 540-544. DOI: 10.19591/j.cnki.cn11-1974/tf.2024050010
Citation: ZHANG Chen, BAO Chongxi. Effect of brazing material pretreatment and sintering atmosphere on sinter-brazing of iron based powder metallurgy parts[J]. Powder Metallurgy Technology, 2024, 42(5): 540-544. DOI: 10.19591/j.cnki.cn11-1974/tf.2024050010

Effect of brazing material pretreatment and sintering atmosphere on sinter-brazing of iron based powder metallurgy parts

More Information
  • Corresponding author:

    BAO Chongxi, E-mail: cxbao@pm-china.com

  • Received Date: May 15, 2024
  • Accepted Date: May 15, 2024
  • Available Online: October 08, 2024
  • The iron-based powder metallurgy materials were sintered and brazed with the water atomized Ancorbraze 72 (AB72) powders. The wettability and penetration depth of the brazing materials were studied by brazing material pretreatment and changing sintering atmosphere. The results show that, with the increase of pretreatment temperature, the maximum diameter of brazing residue on the matrix surface decreases obviously, and the diffusion range of brazing material at 1000 μm away from the wetting surface decreases gradually. When the pretreatment temperature is 800 ℃, the brazing residue is the least, the diffusion range is the least at 1000 μm away from the wetting surface, and the pretreatment effect is the best. When the pretreatment temperature is 800 ℃, the treatment time is 2 h, and the treatment atmosphere is 75%N2+25%H2 (volume fraction), the residue on the brazing surface is less, and the diffusion range of the brazing materials is the smallest at 1000 μm away from the wetting surface. A certain amount of endothermic atmosphere during the sintering brazing can obviously improve the penetration of brazing materials in the matrix. When the flow rate of endothermic atmosphere is 20 m3∙h−1, the improvement of wetting angle and penetration depth is the best.

  • [1]
    李元元, 肖志瑜, 陈维平, 等. 粉末冶金高致密化成形技术的新进展. 粉末冶金材料科学与工程, 2005, 10(1): 1 DOI: 10.3969/j.issn.1673-0224.2005.01.001

    Li Y Y, Xiao Z Y, Chen W P, et al. Progress in high density powder metallurgy forming technology. Mater Sci Eng Powder Metall, 2005, 10(1): 1 DOI: 10.3969/j.issn.1673-0224.2005.01.001
    [2]
    黄培云. 粉末冶金原理. 2版. 北京: 冶金工业出版社, 2004

    Huang P Y. Theory of Power Metallurgy. 2nd Ed. Beijing: Metallurgical Industry Press, 2004
    [3]
    Sokolowski P K, Murphy T F, Lindsley B A. Considerations in sinter-brazing PM components // 2010 International Conference on Powder Metallurgy and Particulate Materials. Hollywood, 2010: 387
    [4]
    黄永强, 申小平, 康利梅. 烧结钎焊粉末冶金铁基零件的材料成分与结构优化. 粉末冶金工业, 2023, 33(4): 32

    Huang Y Q, Shen X P, Kang L M. Material composition and structure optimization for sinter-brazing ferrous powder metallurgy components. Powder Metall Ind, 2023, 33(4): 32
    [5]
    Williams B. 近年来热等静压(HIP)处理与应用发展趋势. 粉末冶金技术, 2014, 32(6): 464

    Williams B. Recent trends in hot isostatic pressing (HIP): processing and applications. Powder Metall Technol, 2014, 32(6): 464
    [6]
    李增峰, 葛渊, 刘海彦, 等. 铂铱合金焊料钎焊性能研究. 粉末冶金技术, 2017, 35(3): 202

    Li Z F, Ge Y, Liu H Y, et al. Study on brazing performance of platinum-iridium alloy solders. Powder Metall Technol, 2017, 35(3): 202
    [7]
    何灵敏, 童郁彬, 毛增光, 等. 铁基粉末冶金零件的连接与焊接. 粉末冶金技术, 2011, 29(4): 283

    He L M, Tong Y B, Mao Z G, et al. Joining and welding of ferrous PM parts. Powder Metall Technol, 2011, 29(4): 283
    [8]
    Sokolowski P K, Murphy T F, Lindsley B A. 烧结钎焊粉末冶金零件研究. 粉末冶金工业, 2012, 22(1): 9 DOI: 10.3969/j.issn.1006-6543.2012.01.002

    Sokolowski P K, Murphy T F, Lindsley B A. Considerations in sinter-brazing PM components. Powder Metall Ind, 2012, 22(1): 9 DOI: 10.3969/j.issn.1006-6543.2012.01.002
    [9]
    包崇玺, 曹阳, 易健宏, 等. 高密度铁基粉末冶金零件制备技术. 粉末冶金技术, 2022, 40(5): 458

    Bao C X, Cao Y, Yi J H, et al. Preparation processes of high density iron-based powder metallurgy parts. Powder Metall Technol, 2022, 40(5): 458
    [10]
    肖紫圣, 罗成, 华健杰, 等. 洁净燃料发动机粉末冶金阀座熔渗烧结工艺研究. 粉末冶金技术, 2017, 35(4): 454

    Xiao Z S, Luo C, Hua J J, et al. Study on melt infiltration sintering process of powder metallurgy valve seat for clean fuel engine. Powder Metall Technol, 2017, 35(4): 454
    [11]
    Lei M, Li Y L, Liu Y P, et al. Effect of weaving structures on the water wicking-evaporating behavior of woven fabrics. Polymoers, 2020, 12(2): 422 DOI: 10.3390/polym12020422
    [12]
    王俊捷, 寇继生, 蔡建超, 等. 基于Tolman长度的Lucas-Washburn渗吸模型改进及数值模拟. 计算物理, 2021, 38(5): 521

    Wang J J, Kou J S, Cai J C, et al. Tolman Length-based modified Lucas-Washburn capillary-driven model and numerical simulation. Chin J Comput Phys, 2021, 38(5): 521
  • Related Articles

    [1]CHEN Xinyu, LI Fenqiang, JIANG Jishuai. Application and development of numerical simulation on mesoscopic analysis of powder compaction[J]. Powder Metallurgy Technology, 2024, 42(4): 418-426. DOI: 10.19591/j.cnki.cn11-1974/tf.2022050001
    [2]LI Yuhua, HE Yuxin, ZHANG Qian, ZHAO Rong, WANG Haojie, CHU Jinghui, NIU Libin. 2D and 3D finite element comparative analysis of compressive properties of porous titanium[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2024030007
    [3]LI Chang, CHEN Lei-lei, QU Zong-hong, LIU Kui-sheng, LAI Yun-jin, LIANG Shu-jin. Numerical simulation study of effect of die structure on the extrusion deformation of FGH4096 alloys[J]. Powder Metallurgy Technology, 2022, 40(3): 277-283. DOI: 10.19591/j.cnki.cn11-1974/tf.2021080014
    [4]LIANG Yuan-long, JIANG Guo-sheng. Finite element simulation of tungsten-coated diamond/copper composites[J]. Powder Metallurgy Technology, 2019, 37(4): 283-287. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.04.008
    [5]ZHANG Ming, LIU Guo-quan, HU Ben-fu, Geng Xiao-xiao, WANG Hao. Finite element simulation and experimental verification on hot extrusion of a novel nickel-base P/M superalloy[J]. Powder Metallurgy Technology, 2018, 36(3): 223-229. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.03.011
    [6]LI Yu, SHEN Wei, ZHAO Peng, PU Yu-ping. Finite element analysis for the yield strength of copper foam[J]. Powder Metallurgy Technology, 2017, 35(1): 3-9. DOI: 10.3969/j.issn.1001-3784.2017.01.001
    [7]Qiao Changchun, Wu Youzhi, Meng Junhu. Finite element analysis on the demolding process of micro-powder injection molding[J]. Powder Metallurgy Technology, 2015, 33(6): 437-444. DOI: 10.3969/j.issn.1001-3784.2015.06.007
    [8]Ma Yunzhu, Wang Jianning, Liu Wensheng, Liu Yuanbiao, Zhang Jiajia. Finite element simulation and optimization of forming process for tungsten-based alloys screw extrusion based on rigid-plastic model[J]. Powder Metallurgy Technology, 2015, 33(1): 42-48.
    [9]Wang Deguang, Wu Yucheng, Jiao Minghua, Yu Jianwei, Xie Ting, Yin Yanguo. Finite element simulation to influence of compacting mode on PM product properties[J]. Powder Metallurgy Technology, 2008, (2): 88-93.
    [10]Finite Element Analysis Model for P/M Driven Gears Deburring[J]. Powder Metallurgy Technology, 2001, 19(5): 293-296. DOI: 10.3321/j.issn:1001-3784.2001.05.011

Catalog

    Article Metrics

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return