Citation: | ZHANG Chen, BAO Chongxi. Effect of brazing material pretreatment and sintering atmosphere on sinter-brazing of iron based powder metallurgy parts[J]. Powder Metallurgy Technology, 2024, 42(5): 540-544. DOI: 10.19591/j.cnki.cn11-1974/tf.2024050010 |
The iron-based powder metallurgy materials were sintered and brazed with the water atomized Ancorbraze 72 (AB72) powders. The wettability and penetration depth of the brazing materials were studied by brazing material pretreatment and changing sintering atmosphere. The results show that, with the increase of pretreatment temperature, the maximum diameter of brazing residue on the matrix surface decreases obviously, and the diffusion range of brazing material at
[1] |
李元元, 肖志瑜, 陈维平, 等. 粉末冶金高致密化成形技术的新进展. 粉末冶金材料科学与工程, 2005, 10(1): 1 DOI: 10.3969/j.issn.1673-0224.2005.01.001
Li Y Y, Xiao Z Y, Chen W P, et al. Progress in high density powder metallurgy forming technology. Mater Sci Eng Powder Metall, 2005, 10(1): 1 DOI: 10.3969/j.issn.1673-0224.2005.01.001
|
[2] |
黄培云. 粉末冶金原理. 2版. 北京: 冶金工业出版社, 2004
Huang P Y. Theory of Power Metallurgy. 2nd Ed. Beijing: Metallurgical Industry Press, 2004
|
[3] |
Sokolowski P K, Murphy T F, Lindsley B A. Considerations in sinter-brazing PM components // 2010 International Conference on Powder Metallurgy and Particulate Materials. Hollywood, 2010: 387
|
[4] |
黄永强, 申小平, 康利梅. 烧结钎焊粉末冶金铁基零件的材料成分与结构优化. 粉末冶金工业, 2023, 33(4): 32
Huang Y Q, Shen X P, Kang L M. Material composition and structure optimization for sinter-brazing ferrous powder metallurgy components. Powder Metall Ind, 2023, 33(4): 32
|
[5] |
Williams B. 近年来热等静压(HIP)处理与应用发展趋势. 粉末冶金技术, 2014, 32(6): 464
Williams B. Recent trends in hot isostatic pressing (HIP): processing and applications. Powder Metall Technol, 2014, 32(6): 464
|
[6] |
李增峰, 葛渊, 刘海彦, 等. 铂铱合金焊料钎焊性能研究. 粉末冶金技术, 2017, 35(3): 202
Li Z F, Ge Y, Liu H Y, et al. Study on brazing performance of platinum-iridium alloy solders. Powder Metall Technol, 2017, 35(3): 202
|
[7] |
何灵敏, 童郁彬, 毛增光, 等. 铁基粉末冶金零件的连接与焊接. 粉末冶金技术, 2011, 29(4): 283
He L M, Tong Y B, Mao Z G, et al. Joining and welding of ferrous PM parts. Powder Metall Technol, 2011, 29(4): 283
|
[8] |
Sokolowski P K, Murphy T F, Lindsley B A. 烧结钎焊粉末冶金零件研究. 粉末冶金工业, 2012, 22(1): 9 DOI: 10.3969/j.issn.1006-6543.2012.01.002
Sokolowski P K, Murphy T F, Lindsley B A. Considerations in sinter-brazing PM components. Powder Metall Ind, 2012, 22(1): 9 DOI: 10.3969/j.issn.1006-6543.2012.01.002
|
[9] |
包崇玺, 曹阳, 易健宏, 等. 高密度铁基粉末冶金零件制备技术. 粉末冶金技术, 2022, 40(5): 458
Bao C X, Cao Y, Yi J H, et al. Preparation processes of high density iron-based powder metallurgy parts. Powder Metall Technol, 2022, 40(5): 458
|
[10] |
肖紫圣, 罗成, 华健杰, 等. 洁净燃料发动机粉末冶金阀座熔渗烧结工艺研究. 粉末冶金技术, 2017, 35(4): 454
Xiao Z S, Luo C, Hua J J, et al. Study on melt infiltration sintering process of powder metallurgy valve seat for clean fuel engine. Powder Metall Technol, 2017, 35(4): 454
|
[11] |
Lei M, Li Y L, Liu Y P, et al. Effect of weaving structures on the water wicking-evaporating behavior of woven fabrics. Polymoers, 2020, 12(2): 422 DOI: 10.3390/polym12020422
|
[12] |
王俊捷, 寇继生, 蔡建超, 等. 基于Tolman长度的Lucas-Washburn渗吸模型改进及数值模拟. 计算物理, 2021, 38(5): 521
Wang J J, Kou J S, Cai J C, et al. Tolman Length-based modified Lucas-Washburn capillary-driven model and numerical simulation. Chin J Comput Phys, 2021, 38(5): 521
|