AdvancedSearch
GU Xiangyu, LIN Yuan, QU Xinglin, GUO Yuxi, ZHANG Li, LI Xiaofeng. Effect of laser power on microstructure and properties of Fe–Mn–Al–Ni–C lightweight steels prepared by laser powder bed fusion[J]. Powder Metallurgy Technology, 2024, 42(5): 471-480. DOI: 10.19591/j.cnki.cn11-1974/tf.2024050014
Citation: GU Xiangyu, LIN Yuan, QU Xinglin, GUO Yuxi, ZHANG Li, LI Xiaofeng. Effect of laser power on microstructure and properties of Fe–Mn–Al–Ni–C lightweight steels prepared by laser powder bed fusion[J]. Powder Metallurgy Technology, 2024, 42(5): 471-480. DOI: 10.19591/j.cnki.cn11-1974/tf.2024050014

Effect of laser power on microstructure and properties of Fe–Mn–Al–Ni–C lightweight steels prepared by laser powder bed fusion

More Information
  • Corresponding author:

    LI Xiaofeng, E-mail: lxf@nuc.edu.cn

  • Received Date: July 24, 2024
  • Accepted Date: July 24, 2024
  • Available Online: July 25, 2024
  • The composition of Fe–30Mn–11Al–12Ni–1C lightweight alloy steels was designed and the effect of laser power on the microstructure and properties of the lightweight steels formed by laser powder bed fusion (LPBF) was studied in this paper. The results show that the relative density of lightweight steel samples formed by LPBF increases gradually with the increase of laser power at a constant scanning speed, and the relative density of samples formed at 120 W is the highest, reaching 99.2%. Under the different laser power, the unfused regions appear in the plane parallel to the construction direction (XOY), and the cracks appear in the plane perpendicular to the construction direction (XOZ). The defect types on the XOY observation plane are different from the XOZ observation plane, which are reflected in the following aspects: XOY plane has a large number of unfused pores, spherical powders, and large holes, and with the increase of laser power, the unfused defects and hole areas gradually decrease, and the spherical powders disappear; the defects on the XOZ plane are mainly holes and cracks, with the increase of laser power, the holes decrease gradually, but the crack width increases. The hardness of samples shows anisotropy, and the anisotropy gradually decreases with the increase of laser power. The hardness on the XOZ plane does not change obviously with laser power, but it is higher than the XOY plane. The microhardness on the XOY plane changes greatly, because the laser power increases and the effect of defects is reduced. When the laser power is 120 W, the hardness on the XOZ plane reaches the maximum as HV0.2 441.3. With laser power of 90 W and scanning speed of 800 mm·s−1, the yield strength and tensile strength of the formed light steel samples reach the maximum value, which are 800.8 MPa and 825.4 MPa respectively. There is a large amount of the precipitated phase at the grain boundary of the samples, resulting in the low elongation of all the samples, so the plasticity of the LPBF formed light steel is poor.

  • [1]
    唐荻, 米振莉, 陈雨来. 国外新型汽车用钢的技术要求及研究开发现状. 钢铁, 2005, 40(6): 1 DOI: 10.3321/j.issn:0449-749X.2005.06.001

    Tang D, Mi Z L, Chen Y L, et al. Technology and research and development of advanced automobile steel abroad. Iron Steel, 2005, 40(6): 1 DOI: 10.3321/j.issn:0449-749X.2005.06.001
    [2]
    孙建, 黄贞益, 李景辉, 等. Fe–Mn–Al–C系低密度钢热处理研究进展. 材料导报, 2023, 37(14): 136

    Sun J, Huang Z Y, Li J H, et al. Research progress in heat treatment of Fe–Mn–Al–C system low-density steel. Mater Rep, 2023, 37(14): 136
    [3]
    Moon J, Park S J, Lee C H, et al. Influence of microstructure evolution on hot ductility behavior of austenitic Fe–Mn–Al–C lightweight steels during hot tensile deformation. Mater Sci Eng A, 2023, 868: 144786 DOI: 10.1016/j.msea.2023.144786
    [4]
    Ha M C, Koo J M, Lee J K, et al. Tensile deformation of a low density Fe–27Mn–12Al–0.8C duplex steel in association with ordered phases at ambient temperature. Mater Sci Eng A, 2013, 586: 276
    [5]
    An Y F, Chen X P, Ren P, et al. Ultrastrong and ductile austenitic lightweight steel via ultra-fine grains and heterogeneous B2 precipitates. Mater Sci Eng A, 2022, 860: 144330 DOI: 10.1016/j.msea.2022.144330
    [6]
    Granato A, Hikata A, Lücke K. Recovery of damping and modulus changes following plastic deformation. Acta Metall, 1958, 6(7): 470 DOI: 10.1016/0001-6160(58)90110-X
    [7]
    邹恒. 铝合金金属粉末注射成型技术研究进展. 粉末冶金技术, DOI: 10.19591/j.cnki.cn11-1974/tf.2023080002

    Zou H. Research progress in metal injection molding of aluminum alloy. Powder Metall Technol, DOI: 10.19591/j.cnki.cn11-1974/tf.2023080002
    [8]
    Kapoor M, Isheim D, Ghosh G, et al. Aging characteristics and mechanical properties of 1600MPa body-centered cubic Cu and B2-NiAl precipitation-strengthened ferritic steel. Acta Mater, 2014, 73: 56 DOI: 10.1016/j.actamat.2014.03.051
    [9]
    Stewart C A, Fonda R W, Knipling K E. Mn-stabilized austenitic steel strengthened by nano-scale β-NiAl (B2), FCC-Cu, and carbides via ICME design. Scr Mater, 2021, 200: 113903 DOI: 10.1016/j.scriptamat.2021.113903
    [10]
    Li Z, Wang Y C, Cheng X W, et al. The effect of Ti–Mo–Nb on the microstructures and tensile properties of a Fe–Mn–Al–C austenitic steel. Mater Sci Eng A, 2020, 780: 139220 DOI: 10.1016/j.msea.2020.139220
    [11]
    章小峰, 李家星, 万亚雄, 等. 低密度钢中有序析出相的研究进展. 材料导报, 2019, 33(23): 3979 DOI: 10.11896/cldb.18120211

    Zhang X F, Li J X, Wan Y X, et al. Research progress of ordered precipitates in low-density steels. Mater Rep, 2019, 33(23): 3979 DOI: 10.11896/cldb.18120211
    [12]
    郜文哲, 韩笑, 魏海滨, 等. 激光粉末床熔融成形金刚石增强铝基复合材料. 粉末冶金技术, 2024, 42(2): 122

    Gao W Z, Han X, Wei H B, et al. Diamond reinforced aluminum matrix composites by laser powder bed fusion. Powder Metall Technol, 2024, 42(2): 122
    [13]
    Hsu T H, Huang P C, Lee M Y, et al. Effect of processing parameters on the fractions of martensite in 17-4PH stainless steel fabricated by selective laser melting. J Alloys Compd, 2021, 859: 157758 DOI: 10.1016/j.jallcom.2020.157758
    [14]
    戴世民, 徐志明, 胡志恒, 等. SLM成形17-4PH不锈钢尺寸相对密度、精度和表面粗糙度研究. 光学与光电技术, 2019, 17(2): 13

    Dai S M, Xu Z M, Hu Z H, et al. Study on the selective laser melting 17-4PH stainless steel: densification, dimensional accuracy and surface roughness. Opt Optoelectron Technol, 2019, 17(2): 13
    [15]
    Hu Z H, Zhu H H, Zhang H, et al. Experimental investigation on selective laser melting of 17-4PH stainless steel. Opt Laser Technol, 2017, 87: 17 DOI: 10.1016/j.optlastec.2016.07.012
    [16]
    周润森, 魏恺文, 梁静静, 等. LPBF成形新型定向凝固镍基高温合金基础工艺研究. 中国激光, 2023, 50(24): 2402304

    Zhou R S, Wei K W, Liang J J, et al. Basic process of new directional solidification nickel-based superalloy fabricated by laser powder bed fusion. Chin J Lasers, 2023, 50(24): 2402304
    [17]
    雪生兵. 可打印专用镍基高温合金设计、制备及性能研究[学位论文]. 兰州: 兰州理工大学, 2023

    Xue S B. Design, Preparation and Properties Rsearch of Printable Dedicated Nickel-Based Superalloy [Dissertation]. Lanzhou: Lanzhou University of Technology, 2023
    [18]
    付继康, 刘红军, 赵吉宾, 等. 激光选区熔化AlSi10Mg铝合金激光熔化沉积连接区密集气孔缺陷特性以及缺陷消除方法. 中国激光, 2023, 50(4): 0402017 DOI: 10.3788/CJL211621

    Fu J K, Liu H J, Zhao J B, et al. Characteristics and elimination method of dense porosity defects in laser melting deposition connection region of AlSi10Mg formed with selected laser melting. Chin J Lasers, 2023, 50(4): 0402017 DOI: 10.3788/CJL211621
    [19]
    张维, 孔德成, 尚宪和, 等. 激光功率对激光熔覆Stellite 6合金微观组织及磨损性能的影响. 粉末冶金技术, DOI: 10.19591/j.cnki.cn11-1974/tf.2023080003

    Zhang W, Kong D C, Shang X H, et al. Effect of laser power on microstructure and wear properties of laser cladding Stellite 6 alloy coating. Powder Metall Technol, DOI: 10.19591/j.cnki.cn11-1974/tf.2023080003
    [20]
    亢红叶. AlSi10Mg合金粉末大层厚高效选区激光熔化成型工艺研究[学位论文]. 重庆: 重庆交通大学, 2023

    Kang H Y. Research on High-Efficiency Selective Laser Melting Process for AlSi10Mg Alloy Powder with Large Layer Thickness [Dissertation]. Chongqing: Chongqing Jiaotong University, 2023
    [21]
    赵金福. 含镍高锰奥氏体轻质钢的组织和力学性能研究[学位论文]. 秦皇岛: 燕山大学, 2022

    Zhao J F. Microstructure and Mechanical Properties of Ni-Containing Austenitic High Mn Lightweight Steel [Dissertation]. Qinhuangdao: Yanshan University, 2022
    [22]
    马成燕, 陶双洋, 韩璐, 等. 激光粉末床熔融技术成形铝合金缺陷研究. 材料科学, 2022, 12(8): 807

    Ma C Y, Tao S Y, Han L, et al. Study on the defects of aluminum alloy formed by laser powder bed fusion technology. Mater Sci, 2022, 12(8): 807
    [23]
    周占明, 唐荻, 赵征志, 等. 固溶温度对Fe–22.8Mn–8.48Al–0.86C低密度钢组织及性能的影响. 材料热处理学报, 2017, 38(9): 123

    Zhou Z M, Tang D, Zhao Z Z, et al. Effect of solution temperature on microstructure and mechanical properties of Fe–22.8Mn–8.48Al–0.86C low density steel. Trans Mater Heat Treat, 2017, 38(9): 123
    [24]
    Waqar S, Guo K, Sun J. Evolution of residual stress behavior in selective laser melting (SLM) of 316L stainless steel through preheating and in-situ re-scanning techniques. Opt Laser Technol, 2022, 149: 107806 DOI: 10.1016/j.optlastec.2021.107806
    [25]
    Bian P Y, Shi J, Liu Y, et al. Influence of laser power and scanning strategy on residual stress distribution in additively manufactured 316L steel. Opt Laser Technol, 2020, 132: 106477 DOI: 10.1016/j.optlastec.2020.106477
    [26]
    Tan Q Y, Liu Y G, Fan Z Q, et al. Effect of processing parameters on the densification of an additively manufactured 2024 Al alloy. J Mater Sci Technol, 2020, 58: 34 DOI: 10.1016/j.jmst.2020.03.070
    [27]
    Tan Q Y, Fan Z Q, Tang X Q, et al. A novel strategy to additively manufacture 7075 aluminium alloy with selective laser melting. Mater Sci Eng A, 2021, 821: 141638 DOI: 10.1016/j.msea.2021.141638
    [28]
    刘煜. 3D打印模具零件开裂的温度场和应力场模拟分析研究[学位论文]. 大连: 大连理工大学, 2021

    Liu Y. Simulation Analysis of Temperature Field and Stress Field of 3D Printing Mold Parts Cracking [Dissertation]. Dalian: Dalian University of Technology, 2021
  • Related Articles

    [1]SHAN Dongdong, WANG Ling, QIN Yingnan, GUAN Ke. Effect of rotary swaging deformation on microstructure and mechanical properties of tungsten alloys[J]. Powder Metallurgy Technology, 2024, 42(3): 290-296. DOI: 10.19591/j.cnki.cn11-1974/tf.2023060003
    [2]GAO Wenzhe, HAN Xiao, WEI Haibin, LU Zhengzhen, ZHANG Li, LI Xiaofeng. Diamond reinforced aluminum matrix composites by laser powder bed fusion[J]. Powder Metallurgy Technology, 2024, 42(2): 122-127. DOI: 10.19591/j.cnki.cn11-1974/tf.2024030002
    [3]Effect of Grinding Body Shape on the Morphology and Properties of WC-10%Co Cemented Carbide[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2024080004
    [4]Influence of aluminum alloy interlayer with different composition on bonding strength of high volume fraction aluminum matrix composites[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2024080009
    [5]LIN Xiaohui, XUE Jianrong, GAO Xuanqiao, LIANG Jing, ZHANG Xin, LI Yanchao, YANG Yichao, ZHANG Wen. Microstructure and high temperature tensile properties of powder metallurgy Mo−Re alloys[J]. Powder Metallurgy Technology, 2023, 41(6): 516-522. DOI: 10.19591/j.cnki.cn11-1974/tf.2021120003
    [6]XUE Jianrong, LIN Xiaohui, LI Yanchao, LIANG Jing, GAO Xuanqiao, ZHANG Xin, ZHANG Wen, LI Laiping. Effect of heat treatment temperature on microstructure and mechanical properties of Mo–14Re alloy tubes[J]. Powder Metallurgy Technology, 2023, 41(3): 263-267. DOI: 10.19591/j.cnki.cn11-1974/tf.2021040011
    [7]LI Ke-feng, SHI Qi, MAO Xin-hua, TAN Chong, LIU Xin. Effect of metallic powder properties on selective laser melting technology and component performances[J]. Powder Metallurgy Technology, 2022, 40(6): 499-509. DOI: 10.19591/j.cnki.cn11-1974/tf.2020060005
    [8]LIN Bing-tao, HE Jun, LIU Zhong-wei, WANG Cheng-yang, LI Ming, SUN Xiao-xia, ZHOU Shu-qiu. Fracture morphology and microstructure analysis of Mo–La nozzles for solid rocket motor[J]. Powder Metallurgy Technology, 2022, 40(1): 80-85. DOI: 10.19591/j.cnki.cn11-1974/tf.2021070003
    [9]Effect of laser power on Microstructure and properties of laser selective melting maraging steel[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2021100008
    [10]XIAO Chang-jiang, DOU Zhi-qiang, LI Juan, LI Zheng-xin. Study on the properties of diamond saw blades prepared by Cu-based pre-alloyed powders[J]. Powder Metallurgy Technology, 2018, 36(4): 287-291. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.04.008

Catalog

    Article Metrics

    Article views (743) PDF downloads (41) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return