Citation: | LIN Xiaohui, XUE Jianrong, GAO Xuanqiao, LIANG Jing, ZHANG Xin, LI Yanchao, YANG Yichao, ZHANG Wen. Microstructure and high temperature tensile properties of powder metallurgy Mo−Re alloys[J]. Powder Metallurgy Technology, 2023, 41(6): 516-522. DOI: 10.19591/j.cnki.cn11-1974/tf.2021120003 |
Mo−14Re and Mo−42Re alloy bars were prepared by powder metallurgy and hot press working. The microstructure, phase composition, and tensile properties at room and high temperature were observed and tested, and the fracture mechanism of Mo−Re alloys was analyzed, combined with the fracture morphology. The results show that, after the hot press working, the Mo−Re alloy grains change from equiaxed to elongated fibrous, and the relative density of alloy bars is more than 99.6%. The solid solution of Re in Mo reduces the lattice constant of Mo−Re alloy from 3.1384 Å of Mo−14Re to 3.1304 Å of Mo−42Re, leading to the increase of lattice distortion. The room and high temperature strength of Mo−Re alloys are greatly improved with the increase of Re mass fraction from 14% to 42%. With the increase of test temperature, the strength of Mo−Re alloys decreases, the elongation of Mo−14Re alloys decreases slightly, while that of Mo−42Re increases. The room temperature fracture of Mo−14Re alloys exhibits a wood-grain tearing fracture, the fracture at 1100~1300 ℃ is dimple, and the plastic deformation is mainly caused by grain boundary slip at 1500 ℃. The room temperature fracture of Mo−42Re alloys shows a transgranular fracture, the fracture at 1100~1500 ℃ is completely dimpled, and the plastic deformation at high temperature is provided by the non-uniform deformation produced by dimple.
[1] |
王东辉, 袁晓波, 李中奎, 等. 钼及钼合金研究与应用进展. 稀有金属快报, 2006, 25(12): 1
Wang D H, Yuan X B, Li Z K, et al. Progress of research and applications for Mo metal and its alloys. Rare Met Lett, 2006, 25(12): 1
|
[2] |
谭强. 钼−铼合金的制造及应用. 中国钼业, 1998, 22(1): 27
Tan Q. Manufacture and application of molybdenum rhenium alloy. China Molybd Ind, 1998, 22(1): 27
|
[3] |
刘仁智, 安耿, 杨秦莉, 等. 钼−铼−镧合金微观组织及力学性能研究. 粉末冶金技术, 2018, 36(6): 429
Liu R Z, An G, Yang Q L, et al. Microstructures and mechanical properties of Mo−Re−La alloy. Powder Metall Technol, 2018, 36(6): 429
|
[4] |
Fabritsiev S A, Pokrovsky A S. The effect of rhenium on the radiation damage resistivity of Mo−Re alloys. J Nucl Mater, 1998, 252(3): 216 DOI: 10.1016/S0022-3115(97)00297-3
|
[5] |
胡彬和, 李龙, 吴晓春, 等. 钼铼合金对掉落临界安全的影响. 原子能科学技术, 2016, 50(10): 1813 DOI: 10.7538/yzk.2016.50.10.1813
Hu B H, Li L, Wu X C, et al. Effect of Mo−Re alloy on drop critical safety. At Energy Sci Technol, 2016, 50(10): 1813 DOI: 10.7538/yzk.2016.50.10.1813
|
[6] |
黄洪涛, 王卫军, 钟武烨, 等. 钼铼合金在空间核电源中的应用性能研究进展. 原子能科学技术, 2020, 54(3): 505
Huang H T, Wang W J, Zhong W Y, et al. Research progress on application of Mo−Re alloy in space nuclear power. At Energy Sci Technol, 2020, 54(3): 505
|
[7] |
Alexander K, Fumio M, Mykola D. Rhenium effect in irradiated Mo−Re alloys and welds. Univ J Mater Sci, 2014, 2(2): 19
|
[8] |
El-Genk M S, Tournier J M. A review of refractory metal alloys and mechanically alloyed-oxide dispersion strengthened steels for space nuclear power systems. J Nucl Mate, 2005, 340(1): 93 DOI: 10.1016/j.jnucmat.2004.10.118
|
[9] |
赵虎. 钼及钼合金烧结技术研究及发展. 粉末冶金技术, 2019, 37(5): 382
Zhao H. Research and development on the sintering techniques of molybdenum and molybdenum alloys. Powder Metall Technol, 2019, 37(5): 382
|
[10] |
邢英华. 热处理对钼铼合金性能与组织的影响. 稀有金属材料与工程. 1998, 27(增刊): 148
Xing Y H. Effect of heat treatment on properties and microstructure of molybdenum rhenium alloy. Rare Met Mater Eng, 1998, 27(Suppl): 148
|
[11] |
张军良, 李中奎, 张小明, 等. 制备方式对MoRe合金组织性能的影响. 稀有金属材料与工程, 2007, 36(增刊3): 355
Zhang J L, Li Z K, Zhang X M, et al. Effect of preparation methods on the microstructure and mechanical properties of the Mo−Re alloy, Rare Met Mater Eng, 2007, 36(Suppl 3): 355
|
[12] |
Mao P l, Han K, Xin Y. Thermodynamic assessment of the Mo−Re binary system. J Alloys Compd, 2008, 464(1-2): 190 DOI: 10.1016/j.jallcom.2007.10.060
|
[13] |
Mannheim R L, Garin J L. Structural identification of phases in Mo−Re alloys within the range from 5 to 95% Re. J Mater Proc Technol, 2003, 143-144: 533 DOI: 10.1016/S0924-0136(03)00342-X
|
[14] |
谭拴斌, 郭让民, 杨升红, 等. 钼铼合金的结构和性能. 稀有金属, 2003, 27(6): 788 DOI: 10.3969/j.issn.0258-7076.2003.06.028
Tan S B, Gu R M, Yang H S, et al. Structure and properties of molybdenum-rhenium alloys. Rare Met, 2003, 27(6): 788 DOI: 10.3969/j.issn.0258-7076.2003.06.028
|
[15] |
Yang Y, Zhang C, Chen S L, et al. First-principles calculation aided thermodynamic modeling of the Mo−Re system. Intermetallics, 2010, 18(4): 574 DOI: 10.1016/j.intermet.2009.10.012
|
[16] |
林小辉. 微量硅强化钼合金板材的微观组织与力学性能[学位论文]. 西安: 西安理工大学, 2010
Lin X H. The Microstructure and Mechanical Property of Minim Silicon Strengthened Molybdenum Sheet Alloys [Dissertation]. Xi’an: Xi’an University of Technology, 2010
|
[17] |
郑修麟. 材料力学性能. 2版. 西安: 西北工业大学出版社, 2000
Zheng X L. Mechanical Properties of Materials. 2nd Ed. Xi’an: Northwestern Polytechnical University Press, 2000
|
[18] |
杨尚磊, 陈艳, 薛小怀, 等. 铼(Re)的性质及应用研究现状. 上海金属, 2005, 27(1): 45
Yang S L, Chen Y, Xue X H, et al. The property and application research situation of rhenium (Re). Shanghai Met, 2005, 27(1): 45
|
1. |
段继平,唐湘林,盛俊英,彭子超,王旭青,邹金文. 热挤压态FGH95合金热变形特性. 粉末冶金技术. 2024(01): 36-44 .
![]() | |
2. |
谷树超,王松,李俊. 基于失效分析的给水泵泵轴显微组织和力学性能对比研究. 电力科技与环保. 2021(04): 38-46 .
![]() | |
3. |
刘健,叶飞,王旭青,彭子超,罗学军. 粉末高温合金Udimet720Liγ′强化相析出行为. 粉末冶金技术. 2021(06): 499-504+525 .
![]() |