AdvancedSearch
LIU Xiao, LI Xingyi, XIAO Zhiyu. Microstructure evolution and densification behavior of iron-based powder metallurgy materials by surface rolling densification technology[J]. Powder Metallurgy Technology, 2024, 42(5): 456-463. DOI: 10.19591/j.cnki.cn11-1974/tf.2024060021
Citation: LIU Xiao, LI Xingyi, XIAO Zhiyu. Microstructure evolution and densification behavior of iron-based powder metallurgy materials by surface rolling densification technology[J]. Powder Metallurgy Technology, 2024, 42(5): 456-463. DOI: 10.19591/j.cnki.cn11-1974/tf.2024060021

Microstructure evolution and densification behavior of iron-based powder metallurgy materials by surface rolling densification technology

More Information
  • Corresponding author:

    LIU Xiao, E-mail: liux@hait.edu.cn

  • Received Date: June 24, 2024
  • Accepted Date: June 24, 2024
  • Available Online: August 01, 2024
  • Fe–2Cu–0.6C powder metallurgy materials with the different density were treated by surface rolling process under the different pressure. The effects of material density and rolling pressure on the densification behavior were investigated. The results show that, the rolling pressure and material density are the main parameters on the surface densification. With the increase of rolling pressure, the densification depth and surface hardness increase significantly. The effect of material density on the surface densification decreases with the increase of rolling pressure. The surface densification depth and surface hardness increase with the increase of material density under a low rolling pressure. However, the values of densification depth and surface hardness for the materials with the different density are approximately equal under a high rolling pressure. After rolling process, the pearlite in the surface layer bends along the rolling direction, the lamellar spacing near the surface becomes smaller, some of the laminates are twisted and wavy, and even some cementite breaks. Ferrite is stretched along the rolling direction, and the grains are refined. Massive dislocation tangle and dislocation walls exist at the grain boundary of ferrite. The refinement of ferrite and deformation of pearlite provide the favorable conditions for improving surface strengthen.

  • [1]
    Silva-Álvarez D F, Márquez-Herrera A, Saldaña-Robles A, et al. Improving the surface integrity of the CoCrMo alloy by the ball burnishing technique. J Mater Res Technol, 2020, 9(4): 7592 DOI: 10.1016/j.jmrt.2020.05.038
    [2]
    Zhou Z Y, Zheng Q Y, Ding C, et al. A review of the development of surface burnishing process technique based on bibliometric analysis and visualization. Int J Adv Manuf Technol, 2021, 115: 1955 DOI: 10.1007/s00170-021-06967-x
    [3]
    Roger L, Joel W, Eric C. Powder Metal Internal Gear Rolling Process: US Patent, US20080282544A1. 2008-11-20
    [4]
    Frech T, Scholzen P, Schäflein P, et al. Design for PM challenges and opportunities for powder metal components in transmission technology. Procedia CIRP, 2018, 70: 186 DOI: 10.1016/j.procir.2018.03.267
    [5]
    Jones P K, Buckley-Golder K, David H, et al. Fatigue properties of advanced high density powder metal alloy steels for high performance powertrain applications // Proceedings of Powder Metallurgy World Congress and Exhibition. Grenada, 1998: 155
    [6]
    Lawcock R, Buckley-Golder K, Sarafinchan D. Testing of high endurance PM steels for automotive transmission gearing components. SAE Tech Pap, https://doi.org/10.4271/1999-01-1112
    [7]
    Gones P K, Buckley-Golder K, Sarafinchan D. Developing PM gear tooth and bearing surfaces for high stress applications. Powder Metall, 1998, 34(1): 26
    [8]
    Hanejko F, Rawlings A, King P, et al. Surface densification coupled with higher density processes targeting high-performance gearing. Mater Sci Forum, 2007, 534-536: 317 DOI: 10.4028/www.scientific.net/MSF.534-536.317
    [9]
    Dizdar S, Fordén L, Andersson D. Surface densified P/M gears made of chromium alloy powder reach automotive quality // Proceedings of Euro Powder Metallurgy Congress. Prague, 2005: 523
    [10]
    Rau G, Sigl L S, 韩凤麟. 轿车变速器的粉末冶金齿轮. 粉末冶金技术, 2012, 30(5): 388 DOI: 10.3969/j.issn.1001-3784.2012.05.013

    Rau G, Sigl L S, Han F L. P/M gear for a passenger car gear box. Powder Metall Technol, 2012, 30(5): 388 DOI: 10.3969/j.issn.1001-3784.2012.05.013
    [11]
    Sigl L S, Rau G, Dennert C, 等. 高使用性能粉末冶金零件的表面致密化. 粉末冶金技术, 2012, 30(2): 144 DOI: 10.3969/j.issn.1001-3784.2012.02.012

    Sigl L S, Rau G, Dennert C, et al. Selective surface densification for high performance P/M components. Powder Metall Technol, 2012, 30(2): 144 DOI: 10.3969/j.issn.1001-3784.2012.02.012
    [12]
    Sigl L S, Rau G, Krehl M, 等. 表面致密化粉末冶金齿轮的性能. 粉末冶金技术, 2012, 30(3): 229 DOI: 10.3969/j.issn.1001-3784.2012.03.013

    Sigl L S, Rau G, Krehl M, et al. Properties of surface densified P/M gears. Powder Metall Technol, 2012, 30(3): 229 DOI: 10.3969/j.issn.1001-3784.2012.03.013
    [13]
    韩凤麟. 高负载粉末冶金齿轮选择性表面致密化. 粉末冶金工业, 2013, 23(4): 6 DOI: 10.3969/j.issn.1006-6543.2013.04.002

    Han F L. Highly loaded P/M gears produced by selective surface densification. Powder Metall Ind, 2013, 23(4): 6 DOI: 10.3969/j.issn.1006-6543.2013.04.002
    [14]
    彭景光, 陈迪, 李德凯, 等. 粉末冶金表面滚压致密化链轮工艺的开发. 粉末冶金技术, 2016, 34(6): 450 DOI: 10.3969/j.issn.1001-3784.2016.06.010

    Peng J G, Chen D, Li D K, et al. Process development of surface rolling densification powder metallurgy sprockets. Powder Metall Technol, 2016, 34(6): 450 DOI: 10.3969/j.issn.1001-3784.2016.06.010
    [15]
    赵妍, 彭景光, 陈迪, 等. 选择表面致密化铁基材料的研究进展. 粉末冶金技术, 2017, 35(6): 469

    Zhao Y, Peng J G, Chen D, et al. Research progress on the selective surface densification of iron-based materials. Powder Metall Technol, 2017, 35(6): 469
    [16]
    黄贤, 罗成, 王天国, 等. 变形量对粉末冶金零件表面致密化的研究. 粉末冶金工业, 2024, 34(1): 70

    Huang X, Luo C, Wang T G, et al. Study of extrusion volume on surface densification of powder metallurgical parts. Powder Metall Ind, 2024, 34(1): 70
    [17]
    丁霞, 彭景光, 陈迪. 挤压表面致密化和滚压表面致密化工艺对比. 粉末冶金工业, 2022, 32(1): 25

    Ding X, Peng J G, Chen D. Comparison between extrusion surface densification and rolling surface densification. Powder Metall Ind, 2022, 32(1): 25
    [18]
    包崇玺, 沈周强, 舒正平. 粉末冶金新技术在烧结齿轮中的应用. 粉末冶金材料科学与工程, 2006, 11(3): 140 DOI: 10.3969/j.issn.1673-0224.2006.03.003

    Bao C X, Shen Z Q, Shu Z P. Advanced P/M techniques for using in gear sintering. Mater Sci Eng Powder Metall, 2006, 11(3): 140 DOI: 10.3969/j.issn.1673-0224.2006.03.003
    [19]
    包崇玺, 曹阳, 易健宏, 等. 高密度铁基粉末冶金零件制备技术. 粉末冶金技术, 2022, 40(5): 458

    Bao C X, Cao Y, Yi J H, et al. Preparation processes of high density iron-based powder metallurgy parts. Powder Metall Technol, 2022, 40(5): 458
    [20]
    Fujiyama S, Koide T, Hongu J, et al. Load bearing capacity of surface-rolled sintered metal gears without grinding // Proceedings of Conference of Chugoku- Shikoku Branch. Tokyo, 2018: 515
    [21]
    Li X, Guo B, Jian J, et al. A new surface vibration extrusion process for surface densification and improvement of properties in powder metallurgical steel. Mater Des, 2022, 216: 110514 DOI: 10.1016/j.matdes.2022.110514
    [22]
    肖志瑜, 刘潇, 关航健, 等. 一种用于粉末冶金烧结材料表面致密化的滚压工具: 中国专利, ZL201410069043.5. 2016-05-04

    Xiao Z Y, Liu X, Guan H J, et al. A Powder Metallurgy Sintering Densification of the Material Surface for Rolling Tool: China Patent, ZL201410069043.5. 2016-05-04
    [23]
    Abdoos H, Khorsand H, Shahani A R. Fatigue behavior of diffusion bonded powder metallurgy steel with heterogeneous microstructure. Mater Des, 2009, 30: 1026 DOI: 10.1016/j.matdes.2008.06.050
    [24]
    Wang T, Wang D P, Liu G, et al. Investigations on the nanocrystallization of 40Cr using ultrasonic surface rolling processing. Appl Surf Sci, 2008, 255(5): 1824 DOI: 10.1016/j.apsusc.2008.06.034
    [25]
    Lawcock R. Rolling contact fatigue of surface densified PM gears. Int J Powder Metall, 2006, 42(1): 17
    [26]
    Ao N, Liu D X, Zhang X H, et al. Surface rolling deformed severity-dependent fatigue mechanism of Ti−6Al−4V alloy. Int J Fatigue, 2022, 158: 106732 DOI: 10.1016/j.ijfatigue.2022.106732
    [27]
    Ren Z D, Li B Z, Zhou Q Z. Rolling contact fatigue crack propagation on contact surface and subsurface in mixed mode I+II+III fracture. Wear, 2022, 506–507: 204459
    [28]
    Zhang F, Mao X P, Bao S Q, et al. Microstructure evolution and its effects on the mechanical behavior of cold drawn pearlite steel wires for bridge cables. J Wuhan Univ Technol Mater Sci, 2022, 37: 96 DOI: 10.1007/s11595-022-2504-4
    [29]
    Tao N R, Wang Z B, Tong W P, et al. An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment. Acta Mater, 2002, 50(18): 4603 DOI: 10.1016/S1359-6454(02)00310-5
    [30]
    Fang F, Zhao Y F, Liu P P, et al. Deformation of cementite in cold drawn pearlitic steel wire. Mater Sci Eng A, 2014, 608: 11 DOI: 10.1016/j.msea.2014.04.050
    [31]
    Li Y J, Choi P, Borchers C, et al. Atomic-scale mechanisms of deformation-induced cementite decomposition in pearlite. Acta Mater, 2011, 59(10): 3965 DOI: 10.1016/j.actamat.2011.03.022
  • Related Articles

    [1]SHU chen, XU Qiang, LIU Yi-bo, YANG Zhiwei, KOU Shengzhong, CAO Rui. Investigation on microstructure and performance of sintered matrix and diamond saw blades welded by laser under different transition layer component[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2023110005
    [2]WANG Lei, GAO Jinchang, BAO Xiaogang, LIN Wanming, GUO Ruipeng. Effects of mechanical milling on microstructure and tensile properties of CoCrFeMnNi high-entropy alloys produced by spark plasma sintering[J]. Powder Metallurgy Technology, 2024, 42(6): 645-651. DOI: 10.19591/j.cnki.cn11-1974/tf.2023010001
    [3]XU Hongyang, LU Jinbin, PENG Xuan, MA Mingxing, MENG Wenlu, LI Hongzhe. Microstructure and phase stability analysis of laser cladding CoCrCu0.4FeNi high entropy alloy coatings[J]. Powder Metallurgy Technology, 2024, 42(3): 320-330. DOI: 10.19591/j.cnki.cn11-1974/tf.2022020003
    [4]LIU Yiran, LI Lei, LI Xiaodong. Effect of shot peening on surface mechanical properties of selective laser melting TC4 titanium alloy[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2024010008
    [5]LI Xin-xing, WANG Hong-xia, SHI Jian-feng, HAN Yu-yang, JIANG Qiu-tong, LIU Yuan. Microstructure and properties of Ni-based alloy coatings on steel surface by sintering cladding[J]. Powder Metallurgy Technology, 2022, 40(3): 245-250. DOI: 10.19591/j.cnki.cn11-1974/tf.2020010001
    [6]CHEN Peng-qi, TAI Yun-xiao, CHENG Ji-gui. Study on the sintering properties of Mo–La2O3 nano-powders prepared by solution combustion method[J]. Powder Metallurgy Technology, 2021, 39(3): 203-208. DOI: 10.19591/j.cnki.cn11-1974/tf.2021020009
    [7]LIANG Jia-miao, WANG Li-min, HE Wei, TANG Chao, WU Xi-mao, WANG Jun. Effect of milling time on microstructures and hardness of nanocrystalline Al-7Si-0.3Mg alloy powders[J]. Powder Metallurgy Technology, 2019, 37(5): 373-381,391. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.05.009
    [8]WANG Da-peng, MU Yun-chao, CHENG Xiao-zhe, ZHANG Wu-qi. Effects of raw material ratio on the properties of molybdenum carbide prepared by spark plasma sintering method[J]. Powder Metallurgy Technology, 2018, 36(1): 31-35. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.01.006
    [9]WANG Qing-xiang, WANG Jun-long. Study on the interdiffusion of W–Ti alloy and β phase stability[J]. Powder Metallurgy Technology, 2018, 36(1): 3-8. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.01.001
    [10]Guo Yang, Liu Zuming, Su Pengfei, Ma Mengmei, Duan Ranxi, Wang Shuai. Microstructure and mechanical properties of nitride dispersion strengthened ferrite-based alloy[J]. Powder Metallurgy Technology, 2016, 34(5): 361-367. DOI: 10.3969/j.issn.1001-3784.2016.05.008

Catalog

    Article Metrics

    Article views (578) PDF downloads (56) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return