AdvancedSearch
LIU Xiao, LI Xingyi, XIAO Zhiyu. Microstructure evolution and densification behavior of iron-based powder metallurgy materials by surface rolling densification technology[J]. Powder Metallurgy Technology, 2024, 42(5): 456-463. DOI: 10.19591/j.cnki.cn11-1974/tf.2024060021
Citation: LIU Xiao, LI Xingyi, XIAO Zhiyu. Microstructure evolution and densification behavior of iron-based powder metallurgy materials by surface rolling densification technology[J]. Powder Metallurgy Technology, 2024, 42(5): 456-463. DOI: 10.19591/j.cnki.cn11-1974/tf.2024060021

Microstructure evolution and densification behavior of iron-based powder metallurgy materials by surface rolling densification technology

More Information
  • Corresponding author:

    LIU Xiao, E-mail: liux@hait.edu.cn

  • Received Date: June 24, 2024
  • Accepted Date: June 24, 2024
  • Available Online: August 01, 2024
  • Fe–2Cu–0.6C powder metallurgy materials with the different density were treated by surface rolling process under the different pressure. The effects of material density and rolling pressure on the densification behavior were investigated. The results show that, the rolling pressure and material density are the main parameters on the surface densification. With the increase of rolling pressure, the densification depth and surface hardness increase significantly. The effect of material density on the surface densification decreases with the increase of rolling pressure. The surface densification depth and surface hardness increase with the increase of material density under a low rolling pressure. However, the values of densification depth and surface hardness for the materials with the different density are approximately equal under a high rolling pressure. After rolling process, the pearlite in the surface layer bends along the rolling direction, the lamellar spacing near the surface becomes smaller, some of the laminates are twisted and wavy, and even some cementite breaks. Ferrite is stretched along the rolling direction, and the grains are refined. Massive dislocation tangle and dislocation walls exist at the grain boundary of ferrite. The refinement of ferrite and deformation of pearlite provide the favorable conditions for improving surface strengthen.

  • [1]
    Silva-Álvarez D F, Márquez-Herrera A, Saldaña-Robles A, et al. Improving the surface integrity of the CoCrMo alloy by the ball burnishing technique. J Mater Res Technol, 2020, 9(4): 7592 DOI: 10.1016/j.jmrt.2020.05.038
    [2]
    Zhou Z Y, Zheng Q Y, Ding C, et al. A review of the development of surface burnishing process technique based on bibliometric analysis and visualization. Int J Adv Manuf Technol, 2021, 115: 1955 DOI: 10.1007/s00170-021-06967-x
    [3]
    Roger L, Joel W, Eric C. Powder Metal Internal Gear Rolling Process: US Patent, US20080282544A1. 2008-11-20
    [4]
    Frech T, Scholzen P, Schäflein P, et al. Design for PM challenges and opportunities for powder metal components in transmission technology. Procedia CIRP, 2018, 70: 186 DOI: 10.1016/j.procir.2018.03.267
    [5]
    Jones P K, Buckley-Golder K, David H, et al. Fatigue properties of advanced high density powder metal alloy steels for high performance powertrain applications // Proceedings of Powder Metallurgy World Congress and Exhibition. Grenada, 1998: 155
    [6]
    Lawcock R, Buckley-Golder K, Sarafinchan D. Testing of high endurance PM steels for automotive transmission gearing components. SAE Tech Pap, https://doi.org/10.4271/1999-01-1112
    [7]
    Gones P K, Buckley-Golder K, Sarafinchan D. Developing PM gear tooth and bearing surfaces for high stress applications. Powder Metall, 1998, 34(1): 26
    [8]
    Hanejko F, Rawlings A, King P, et al. Surface densification coupled with higher density processes targeting high-performance gearing. Mater Sci Forum, 2007, 534-536: 317 DOI: 10.4028/www.scientific.net/MSF.534-536.317
    [9]
    Dizdar S, Fordén L, Andersson D. Surface densified P/M gears made of chromium alloy powder reach automotive quality // Proceedings of Euro Powder Metallurgy Congress. Prague, 2005: 523
    [10]
    Rau G, Sigl L S, 韩凤麟. 轿车变速器的粉末冶金齿轮. 粉末冶金技术, 2012, 30(5): 388 DOI: 10.3969/j.issn.1001-3784.2012.05.013

    Rau G, Sigl L S, Han F L. P/M gear for a passenger car gear box. Powder Metall Technol, 2012, 30(5): 388 DOI: 10.3969/j.issn.1001-3784.2012.05.013
    [11]
    Sigl L S, Rau G, Dennert C, 等. 高使用性能粉末冶金零件的表面致密化. 粉末冶金技术, 2012, 30(2): 144 DOI: 10.3969/j.issn.1001-3784.2012.02.012

    Sigl L S, Rau G, Dennert C, et al. Selective surface densification for high performance P/M components. Powder Metall Technol, 2012, 30(2): 144 DOI: 10.3969/j.issn.1001-3784.2012.02.012
    [12]
    Sigl L S, Rau G, Krehl M, 等. 表面致密化粉末冶金齿轮的性能. 粉末冶金技术, 2012, 30(3): 229 DOI: 10.3969/j.issn.1001-3784.2012.03.013

    Sigl L S, Rau G, Krehl M, et al. Properties of surface densified P/M gears. Powder Metall Technol, 2012, 30(3): 229 DOI: 10.3969/j.issn.1001-3784.2012.03.013
    [13]
    韩凤麟. 高负载粉末冶金齿轮选择性表面致密化. 粉末冶金工业, 2013, 23(4): 6 DOI: 10.3969/j.issn.1006-6543.2013.04.002

    Han F L. Highly loaded P/M gears produced by selective surface densification. Powder Metall Ind, 2013, 23(4): 6 DOI: 10.3969/j.issn.1006-6543.2013.04.002
    [14]
    彭景光, 陈迪, 李德凯, 等. 粉末冶金表面滚压致密化链轮工艺的开发. 粉末冶金技术, 2016, 34(6): 450 DOI: 10.3969/j.issn.1001-3784.2016.06.010

    Peng J G, Chen D, Li D K, et al. Process development of surface rolling densification powder metallurgy sprockets. Powder Metall Technol, 2016, 34(6): 450 DOI: 10.3969/j.issn.1001-3784.2016.06.010
    [15]
    赵妍, 彭景光, 陈迪, 等. 选择表面致密化铁基材料的研究进展. 粉末冶金技术, 2017, 35(6): 469

    Zhao Y, Peng J G, Chen D, et al. Research progress on the selective surface densification of iron-based materials. Powder Metall Technol, 2017, 35(6): 469
    [16]
    黄贤, 罗成, 王天国, 等. 变形量对粉末冶金零件表面致密化的研究. 粉末冶金工业, 2024, 34(1): 70

    Huang X, Luo C, Wang T G, et al. Study of extrusion volume on surface densification of powder metallurgical parts. Powder Metall Ind, 2024, 34(1): 70
    [17]
    丁霞, 彭景光, 陈迪. 挤压表面致密化和滚压表面致密化工艺对比. 粉末冶金工业, 2022, 32(1): 25

    Ding X, Peng J G, Chen D. Comparison between extrusion surface densification and rolling surface densification. Powder Metall Ind, 2022, 32(1): 25
    [18]
    包崇玺, 沈周强, 舒正平. 粉末冶金新技术在烧结齿轮中的应用. 粉末冶金材料科学与工程, 2006, 11(3): 140 DOI: 10.3969/j.issn.1673-0224.2006.03.003

    Bao C X, Shen Z Q, Shu Z P. Advanced P/M techniques for using in gear sintering. Mater Sci Eng Powder Metall, 2006, 11(3): 140 DOI: 10.3969/j.issn.1673-0224.2006.03.003
    [19]
    包崇玺, 曹阳, 易健宏, 等. 高密度铁基粉末冶金零件制备技术. 粉末冶金技术, 2022, 40(5): 458

    Bao C X, Cao Y, Yi J H, et al. Preparation processes of high density iron-based powder metallurgy parts. Powder Metall Technol, 2022, 40(5): 458
    [20]
    Fujiyama S, Koide T, Hongu J, et al. Load bearing capacity of surface-rolled sintered metal gears without grinding // Proceedings of Conference of Chugoku- Shikoku Branch. Tokyo, 2018: 515
    [21]
    Li X, Guo B, Jian J, et al. A new surface vibration extrusion process for surface densification and improvement of properties in powder metallurgical steel. Mater Des, 2022, 216: 110514 DOI: 10.1016/j.matdes.2022.110514
    [22]
    肖志瑜, 刘潇, 关航健, 等. 一种用于粉末冶金烧结材料表面致密化的滚压工具: 中国专利, ZL201410069043.5. 2016-05-04

    Xiao Z Y, Liu X, Guan H J, et al. A Powder Metallurgy Sintering Densification of the Material Surface for Rolling Tool: China Patent, ZL201410069043.5. 2016-05-04
    [23]
    Abdoos H, Khorsand H, Shahani A R. Fatigue behavior of diffusion bonded powder metallurgy steel with heterogeneous microstructure. Mater Des, 2009, 30: 1026 DOI: 10.1016/j.matdes.2008.06.050
    [24]
    Wang T, Wang D P, Liu G, et al. Investigations on the nanocrystallization of 40Cr using ultrasonic surface rolling processing. Appl Surf Sci, 2008, 255(5): 1824 DOI: 10.1016/j.apsusc.2008.06.034
    [25]
    Lawcock R. Rolling contact fatigue of surface densified PM gears. Int J Powder Metall, 2006, 42(1): 17
    [26]
    Ao N, Liu D X, Zhang X H, et al. Surface rolling deformed severity-dependent fatigue mechanism of Ti−6Al−4V alloy. Int J Fatigue, 2022, 158: 106732 DOI: 10.1016/j.ijfatigue.2022.106732
    [27]
    Ren Z D, Li B Z, Zhou Q Z. Rolling contact fatigue crack propagation on contact surface and subsurface in mixed mode I+II+III fracture. Wear, 2022, 506–507: 204459
    [28]
    Zhang F, Mao X P, Bao S Q, et al. Microstructure evolution and its effects on the mechanical behavior of cold drawn pearlite steel wires for bridge cables. J Wuhan Univ Technol Mater Sci, 2022, 37: 96 DOI: 10.1007/s11595-022-2504-4
    [29]
    Tao N R, Wang Z B, Tong W P, et al. An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment. Acta Mater, 2002, 50(18): 4603 DOI: 10.1016/S1359-6454(02)00310-5
    [30]
    Fang F, Zhao Y F, Liu P P, et al. Deformation of cementite in cold drawn pearlitic steel wire. Mater Sci Eng A, 2014, 608: 11 DOI: 10.1016/j.msea.2014.04.050
    [31]
    Li Y J, Choi P, Borchers C, et al. Atomic-scale mechanisms of deformation-induced cementite decomposition in pearlite. Acta Mater, 2011, 59(10): 3965 DOI: 10.1016/j.actamat.2011.03.022
  • Related Articles

    [1]DENG Xiaochun, KANG Xiaodong, ZHANG Guohua. Preparation of WC–xVC composite powders and the effect of high content VC on microstructure and mechanical properties of WC–Co based cemented carbides[J]. Powder Metallurgy Technology, 2024, 42(3): 226-233, 254. DOI: 10.19591/j.cnki.cn11-1974/tf.2023120013
    [2]YAO Hui-long, XIONG Ning, WANG Ling, QIN Ying-nan, ZHOU Wu-ping, YANG Lin. Effect of cyclic heat treatment on impact toughness of 93W–5Ni–2Fe tungsten heavy alloy[J]. Powder Metallurgy Technology, 2021, 39(3): 269-273. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030009
    [3]Chen Ding, Hu Shan, Zhang Zhongjian, Xu Tao, Peng Wen, Yuan Hongmei. Research status of fracture toughness testing for cemented carbides[J]. Powder Metallurgy Technology, 2013, 31(3): 216-222. DOI: 10.3969/j.issn.1001-3784.2013.03.011
    [4]Xie Zhuangde, Shen Jun, Dong Yinsheng, Zhou Bide, Li Qingchun. RAPIDLY SOLIDIFIED ALUMINUM-SILICON ALLOYS PRODUCTION, MICROSTRUCTURE AND FRACTURE BEHAVIOR[J]. Powder Metallurgy Technology, 2000, 18(2): 111-116.
    [5]Liu Ning, Jiang Yong, Lu Qingrong, Xiong Weihao, Cui Kun, Hu Zhenhua. EFFECT OF CHEMICAL COMPOSITION ON THE FRACTURE TOUGHNESS OF Ti(C, N) BASED CERMETS[J]. Powder Metallurgy Technology, 1999, 17(4): 269-272.
    [6]Cao Shunhua, Xu Runze. Measurement of Sintered Steel's Fracture Toughness by Repeated Impact with Low Energy[J]. Powder Metallurgy Technology, 1997, 15(3): 217-219.
    [7]Tong Guoquan, Wang Erde, He Shaoyuan. STUDY ON TESTING METHOD AND FRACTURE MODE OF WC-20(Fe/Co/Ni) CEMENTED CARBIDE[J]. Powder Metallurgy Technology, 1995, 13(1): 38-43.
    [8]Luo Huahui, Shen Shuting, Cai Yixun. A STUDY OF FRACTURE TOUGHNESS OF HARDMETALS BY CHEVRON-NOTCHING METHOD[J]. Powder Metallurgy Technology, 1989, 7(3): 165-171.
    [9]Huang Luguan. FRACTURE TOUGHNESS AND HIGH DUCTILITY OF STEEL-BONDED CARBIDE[J]. Powder Metallurgy Technology, 1986, 4(1): 10-15.
    [10]Zhen Zhenxian, Yao Heng, Zhu Guisen, Liu Mingcheng. EFFECTS OF VACUUM HEAT-TREATMENT ON FRACTURE TOUGHNESS OF HEAVY ALLOYS (95W-3.5Ni-1.5Fe)[J]. Powder Metallurgy Technology, 1984, 2(4): 11-15.

Catalog

    Article Metrics

    Article views (576) PDF downloads (56) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return