AdvancedSearch
Study on mechanical properties of aluminum foam filled tubes with different bonding methods[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2024090007
Citation: Study on mechanical properties of aluminum foam filled tubes with different bonding methods[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2024090007

Study on mechanical properties of aluminum foam filled tubes with different bonding methods

More Information
  • Available Online: November 21, 2024
  • In this paper, different diameters of aluminum foam elements were prepared by advanced powder compact melting method (APCM), and then it was filled into aluminum alloy thin-walled tubes in a disorderly manner according to different bonding methods, and finally different types of composite structures of APCM aluminum foam-filled thin-walled tubes were obtained (filled tubes). The quasi-static compression test of the filled tubes was carried out by a universal testing machine, and the effects of the filling diameter and the bonding method on the mechanical properties and energy-absorbing effect of the filled tubes were investigated. The results show that the bonding method has a more significant effect on the performance of the filled tubes than that of the filling element diameter. Under the same bonding method, the compression energy absorption effect of the filled tubes with a filling element diameter of 15 mm is the best; under different bonding methods, the compression energy absorption effect of the foam bonded filled tubes is the best, while the compression energy absorption effect of the bonded filled tubes is better than that of the non-bonded filled tubes.
  • Related Articles

    [1]FAN Xinyi, HU Lingui, DENG Zehaochen, YANG Jiaqi, SHEN Xiaoping. Effect of phosphorus content on the mechanical and friction properties of oil-impregnated bronze bearings[J]. Powder Metallurgy Technology, 2024, 42(2): 200-206. DOI: 10.19591/j.cnki.cn11-1974/tf.2021090006
    [2]HOU Yanan, YANG Kunming, LIU Yue, FAN Tongxiang. Effect of interfacial thermal mismatch on mechanical properties of metal matrix composites[J]. Powder Metallurgy Technology, 2023, 41(6): 490-499, 507. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030033
    [3]YANG Jie, LIU Le, HUANG Xiaolin. Microstructure and mechanical properties of powder metallurgy sinter hardening steels with low Cr content[J]. Powder Metallurgy Technology, 2023, 41(4): 345-349, 355. DOI: 10.19591/j.cnki.cn11-1974/tf.2020060008
    [4]PENG Erbao, MA Xiao. Microstructure and mechanical properties of nanoscale xSiC/Mg‒5.5Zn‒0.1Y alloys by solid phase synthesis[J]. Powder Metallurgy Technology, 2023, 41(2): 149-153. DOI: 10.19591/j.cnki.cn11-1974/tf.2020110009
    [5]GU Si-min, XIAO Ping-an, GU Jing-hong, LÜ Rong, ZHAO Ji-kang, ZHONG Si-yuan. Effect of two-stage supersolidus liquid phase sintering on microstructure and properties of 15Cr high chromium cast iron[J]. Powder Metallurgy Technology, 2022, 40(1): 13-21. DOI: 10.19591/j.cnki.cn11-1974/tf.2021040016
    [6]WEI Zi-chen, ZHANG Lin, QIN Ming-li, LI Xing-yu, QUE Zhong-you, QU Xuan-hui. Effect of powder size on microstructure and mechanical properties of rhenium[J]. Powder Metallurgy Technology, 2021, 39(3): 196-202. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030014
    [7]WANG Xin-feng, HE Wei-wei, ZHU Ji-lei, XIANG Chang-shu. Microstructure and mechanical properties of Fe–Co–Ni based superalloy prepared by hot isostatic pressing[J]. Powder Metallurgy Technology, 2020, 38(5): 371-376, 390. DOI: 10.19591/j.cnki.cn11-1974/tf.2019060006
    [8]SUN Lu, ZHANG Ji-feng, QIU Tian-xu, SHEN Xiao-ping. Effect of forging temperature on microstructure and mechanical properties of powder hot-forged alloy contained molybdenum[J]. Powder Metallurgy Technology, 2020, 38(3): 174-182. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.03.002
    [9]LIU Ren-zhi, AN Geng, YANG Qin-li, ZHUANG Fei, WANG Yin-ting, CUI Yu-qing, WANG Na, CAO Wei-cheng. Microstructures and mechanical properties of Mo-Re-La alloy[J]. Powder Metallurgy Technology, 2018, 36(6): 429-432,444. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.06.005
    [10]Wang Fuchi, Wang Yingchun, Huang Guohua, Li Shukui. Effects of Carbon Content on Precipitated Phase and Dynamic Mechanical Properties of W-Ni-Fe Heavy Alloys[J]. Powder Metallurgy Technology, 1998, 16(2): 93-96.
  • Cited by

    Periodical cited type(1)

    1. 顾祥宇,林媛,曲星霖,郭玉玺,张利,李晓峰. 激光功率对激光粉末床熔融成形Fe–Mn–Al–Ni–C轻质钢组织及性能的影响. 粉末冶金技术. 2024(05): 471-480 . 本站查看

    Other cited types(0)

Catalog

    Article Metrics

    Article views (36) PDF downloads (3) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return