-
摘要: 通过富氮气氛烧结WC‒10TiC‒0.5VC‒0.5Cr2C3‒12Co和WC‒12Co硬质合金,研究梯度结构和均匀结构硬质合金的微观结构及力学性能。利用扫描电子显微镜观察合金断面的微观形貌,使用X射线衍射仪和能谱仪分析合金物相组成,并对合金表面和芯部的硬度与断裂韧性进行测试。结果表明:与均匀结构的WC‒12Co硬质合金不同,WC‒10TiC‒0.5VC‒0.5Cr2C3‒12Co梯度结构硬质合金的表层富含立方相TiCN,该表层的厚度大约为12 μm,表层下方是富钴粗晶过渡层。WC‒10TiC‒0.5VC‒0.5Cr2C3‒12Co硬质合金具有表面硬度高、芯部断裂韧性高、WC晶粒细小及分布均匀等优点。Abstract: The microstructure and mechanical properties of the WC‒10TiC‒0.5VC‒0.5Cr2C3‒12Co and WC‒12Co cemented carbides in the functionally graded and uniform structure were systematically investigated by sintering in nitrogen-rich atmosphere. The scanning electron microscope (SEM), energy disperse spectroscope (EDS), and X-ray diffractometer (XRD) were used for the microstructure observation and phase composition analysis, and the hardness and fracture toughness tests were made in both the surface and the center of the cemented carbides. The results show that, different from the WC‒12Co cemented carbides in uniform structure, the surface layer of the WC‒10TiC‒0.5VC‒0.5Cr2C3‒12Co cemented carbides in the gradient structure is rich in TiCN cubic phase, which is about 12 μm in thickness, and there is a cobalt-rich and coarse-grain intermediate layer below the surface layer of the WC‒10TiC‒0.5VC‒0.5Cr2C3‒12Co cemented carbides. Such gradient and ultrafine cemented carbides show the advantage as the high hardness in the surface layer, the high fracture toughness in the core, and the ultrafine and uniform WC grain.
-
Keywords:
- cemented carbides /
- gradient structure /
- microstructure /
- grain size
-
-
图 4 硬质合金芯部微观组织和WC晶粒尺寸分布:(a)合金A微观组织;(b)合金B微观组织;(c)合金A的WC晶粒尺寸分布;(d)合金B的WC晶粒尺寸分布
Figure 4. Microstructure and WC grain size distribution of the cemented carbides in the core: (a) microstructure of alloy A; (b) microstructure of alloy B; (c) WC grain size distribution of alloy A; (d) WC grain size distribution of alloy B
表 1 合金A不同区域能谱分析结果
Table 1 EDS analysis on the surface region of alloy A
位置 质量分数 / % Co Ti W C N 表层 0.87 27.45 54.39 14.71 2.58 过渡层 31.65 5.63 50.08 12.64 0 内部正常组织区域 14.32 15.48 57.75 12.45 0 表 2 合金表面和芯部的硬度与韧性
Table 2 Hardness and fracture toughness of alloys A and B (surface and center)
试样 表面硬度,HV30 芯部硬度,HV30 表面韧性 / (MPa·m1/2) 韧性芯部 / (MPa·m1/2) A 1930±35 1755±21 7.65 10.45 B 1650±40 1685±26 11.86 11.63 -
[1] García J, Ciprés V C, Blomqvist A, et al. Cemented carbide microstructures: a review. Int J Refract Met Hard Mater, 2019, 80: 40 DOI: 10.1016/j.ijrmhm.2018.12.004
[2] Van der Merwe R, Sacks N. Effect of TaC and TiC on the friction and dry sliding wear of WC−6wt.% Co cemented carbides against steel counterfaces. Int J Refract Met Hard Mater, 2013, 41: 94 DOI: 10.1016/j.ijrmhm.2013.02.009
[3] Konyashin I, Farag S, Ries B, et al. WC−Co−Re cemented carbides: Structure, properties and potential applications. Int J Refract Met Hard Mater, 2019, 78: 247 DOI: 10.1016/j.ijrmhm.2018.10.001
[4] Espinosa L, Bonache V, Salvador M D. Friction and wear behaviour of WC−Co−Cr3C2−VC cemented carbides obtained from nanocrystalline mixtures. Wear, 2011, 272(1): 62 DOI: 10.1016/j.wear.2011.07.012
[5] Zhang G, Yang X, Yang Z, et al. Preparation of WC/CoCrFeNiAl0.2 high-entropy-alloy composites by high-gravity combustion synthesis. Int J Miner Metall Mater, 2020, 27: 244 DOI: 10.1007/s12613-019-1892-8
[6] Hei H, Ma J, Li X, et al. Preparation and performance of chemical vapor deposition diamond coatings synthesized onto the cemented carbide micro-end mills with a SiC interlayer. Surf Coat Technol, 2015, 261: 272 DOI: 10.1016/j.surfcoat.2014.11.019
[7] Parihar R S, Setti S G, Sahu R K. Effect of sintering parameters on microstructure and mechanical properties of self-lubricating functionally graded cemented tungsten carbide. J Manuf Process, 2019, 45: 498 DOI: 10.1016/j.jmapro.2019.07.025
[8] Liu Y, Li X, Zhou J, et al. Effects of Y2O3 addition on microstructures and mechanical properties of WC−Co functionally graded cemented carbides. Int J Miner Metall Mater, 2015, 50: 53
[9] Zhang W, Du Y, Chen W, et al. CSUDDCC1—a diffusion database for multicomponent cemented carbides. Int J Miner Metall Mater, 2014, 43: 164
[10] Liu K, Wang Z, Yin Z, et al. Effect of Co content on microstructure and mechanical properties of ultrafine grained WC−Co cemented carbide sintered by spark plasma sintering. Ceram Int, 2018, 44(15): 18711 DOI: 10.1016/j.ceramint.2018.07.100
[11] 吕小军, 陈明, 杨青青, 等. 真空/压力烧结淬火一体化装置的研究. 硬质合金, 2013, 30(3): 167 Lü X J, Chen M, Yang Q Q, et al. Research on integrated vacuum/pressure sintering and quenching equipment. Cement Carb, 2013, 30(3): 167
[12] Garcia J, Pitonak R. The role of cemented carbide functionally graded outer-layers on the wear performance of coated cutting tools. Int J Refract Met Hard Mater, 2013, 36: 52 DOI: 10.1016/j.ijrmhm.2011.12.007
[13] Chen H, Yang Q, Yang J, et al. Effects of VC/Cr3C2 on WC grain morphologies and mechanical properties of WC-6wt.% Co cemented carbides. J Alloys Compd, 2017, 714: 245 DOI: 10.1016/j.jallcom.2017.04.187
[14] Yildiz B K, Yilmaz H, Tür Y K. Influence of nickel addition on the microstructure and mechanical properties of Al2O3-5vol% ZrO2 ceramic composites prepared via precipitation method. Int J Miner Metall Mater, 2019, 26: 908 DOI: 10.1007/s12613-019-1792-y
[15] Okada K, Osada A. Microstructural study on the grain growth inhibition of VC-doped WC−Co cemented carbides. Int J Refract Met Hard Mater, 2017, 62: 149 DOI: 10.1016/j.ijrmhm.2016.06.009
[16] Peng Y, Du Y, Zhou P, et al. CSUTDCC1—a thermodynamic database for multicomponent cemented carbides. Int J Refract Met Hard Mater, 2014, 42: 57 DOI: 10.1016/j.ijrmhm.2013.10.005