高级检索

固体氧化物燃料电池用SUS430-Sr2Fe1.5Mo0.5O6‒δ不锈钢-陶瓷复合连接体材料的制备及性能研究

王飘飘, 陈鹏起, 方青青, 张美, 洪涛, 程继贵

王飘飘, 陈鹏起, 方青青, 张美, 洪涛, 程继贵. 固体氧化物燃料电池用SUS430-Sr2Fe1.5Mo0.5O6‒δ不锈钢-陶瓷复合连接体材料的制备及性能研究[J]. 粉末冶金技术, 2021, 39(2): 99-106. DOI: 10.19591/j.cnki.cn11-1974/tf.2020120011
引用本文: 王飘飘, 陈鹏起, 方青青, 张美, 洪涛, 程继贵. 固体氧化物燃料电池用SUS430-Sr2Fe1.5Mo0.5O6‒δ不锈钢-陶瓷复合连接体材料的制备及性能研究[J]. 粉末冶金技术, 2021, 39(2): 99-106. DOI: 10.19591/j.cnki.cn11-1974/tf.2020120011
WANG Piao-piao, CHEN Peng-qi, FANG Qing-qing, ZHANG Mei, HONG Tao, CHENG Ji-gui. Preparation and performance of SUS430-Sr2Fe1.5Mo0.5O6‒δ stainless steel-ceramic composite interconnect materials for solid oxide fuel cell[J]. Powder Metallurgy Technology, 2021, 39(2): 99-106. DOI: 10.19591/j.cnki.cn11-1974/tf.2020120011
Citation: WANG Piao-piao, CHEN Peng-qi, FANG Qing-qing, ZHANG Mei, HONG Tao, CHENG Ji-gui. Preparation and performance of SUS430-Sr2Fe1.5Mo0.5O6‒δ stainless steel-ceramic composite interconnect materials for solid oxide fuel cell[J]. Powder Metallurgy Technology, 2021, 39(2): 99-106. DOI: 10.19591/j.cnki.cn11-1974/tf.2020120011

固体氧化物燃料电池用SUS430-Sr2Fe1.5Mo0.5O6‒δ不锈钢-陶瓷复合连接体材料的制备及性能研究

基金项目: 国家自然科学基金资助项目(51802065);中国博士后科学基金资助项目(2018M630702);中央高校基本科研基金资助项目(PA2019GDPK0083)
详细信息
    通讯作者:

    程继贵: E-mail:jgcheng@hfut.edu.cn

  • 中图分类号: TF125.1

Preparation and performance of SUS430-Sr2Fe1.5Mo0.5O6‒δ stainless steel-ceramic composite interconnect materials for solid oxide fuel cell

More Information
  • 摘要: 以SUS430不锈钢粉末和Sr2Fe1.5Mo0.5O6−δ(SFM)陶瓷粉末为原料,通过成形烧结结合涂覆的方法制备了应用于固体氧化物燃料电池(solid oxide fuel cell,SOFC)的SUS430-SFM不锈钢-陶瓷复合连接体材料,并对SUS430和SUS430-SFM两种烧结体试样的显微组织、抗氧化性能和导电性能进行了分析。结果表明,SFM涂层与SUS430基体具有相匹配的热膨胀系数(thermal expansion coefficient,TEC),两者界面结合良好;在空气气氛中经800 ℃氧化140 h后,SUS430-SFM试样的氧化速率常数(K)约为3.66×10−14 g2∙cm−4∙s−1,比SUS430试样(2.42×10−14 g2∙cm−4∙s−1)降低了约50%,其面比电阻(area specific resistance,ASR)则由SUS430试样的81 mΩ∙cm2降至SUS430-SFM的2.6 mΩ∙cm2,说明SFM涂层能够有效改善SUS430不锈钢基体的抗氧化及导电性能。
    Abstract: The SUS430-Sr2Fe1.5Mo0.5O6−δ (SUS430-SFM) stainless steel-ceramic composite connector materials for solid oxide fuel cell (SOFC) were prepared by a compaction-sintering-coating method, using SUS430 stainless powders and Sr2Fe1.5Mo0.5O6−δ (SFM) ceramic powders as the raw materials. Microstructure, oxidation resistance, and electrical conductivity of the sintered SUS430 and SUS430-SFM samples were characterized. The results show that the SFM coating and the SUS430 substrate show a matching thermal expansion coefficient (TEC), and there is a good combination between the coating and the substrate. The oxidation rate constant of the SUS430-SFM sample is about 3.66×10−14 g2∙cm−4∙s−1 after oxidation at 800 ℃ for 140 h in air, which is about 50% lower than that of the SUS430 sample (2.42×10−14 g2∙cm−4∙s−1). The area specific resistance (ASR) of the SUS430-SFM sample also reduces from 81 mΩ∙cm2 (SUS430 sample) to 2.6 mΩ∙cm2. The present work indicates that the SFM coating can effectively improve the oxidation resistance and the electrical conductivity of the SUS430 stainless substrate.
  • 图  1   SUS430和SFM粉体X射线衍射谱图:(a)SUS430粉末;(b)SFM粉末

    Figure  1.   XRD patterns of the SUS430 and SFM powders: (a) SUS430 powders; (b) SFM powders

    图  2   SUS430和SFM粉体显微形貌及粒度分布曲线:(a)SUS430粉体;(b)SFM粉体

    Figure  2.   SEM images and the particle size distribution of the SUS430 and SFM powders: (a) SUS430 powders; (b) SFM powders

    图  3   SUS430和SUS430-SFM烧结体试样的表面微观形貌:(a)SUS430试样;(b)SUS430-SFM试样

    Figure  3.   Surface microtopography of the sintered SUS430 and SUS430-SFM samples: (a) SUS430 sample; (b) SUS430-SFM sample

    图  4   SUS430和SFM烧结体试样的ΔL/L随温度的变化

    Figure  4.   ΔL/L of the sintered SUS430 and SFM samples as a function of temperature

    图  5   SUS430-SFM试样界面显微形貌(a)和能谱分析面扫描图((b)~(f))

    Figure  5.   SEM images (a) and EDS mapping ((b)~(f)) of the interface of SUS430-SFM samples

    图  6   SUS430和SUS430-SFM试样氧化增重与氧化时间的关系

    Figure  6.   Relationship between the oxidation weight gain of the SUS430 and SUS430-SFM samples as a function of oxidation time

    图  7   SUS430试样在空气中于800 ℃氧化140 h后的显微形貌(a)、X射线衍射谱图(b)和能谱分析(c)

    Figure  7.   SEM images (a), XRD patterns (b), and EDS mapping (c) of the SUS430 sample after oxidation at 800 ℃ in air for 140 h

    图  8   SUS430-SFM试样在空气中于800 ℃氧化140 h后显微形貌(a)、X射线衍射谱图(b)和能谱分析(c)

    Figure  8.   SEM images (a), XRD patterns (b), and EDS mapping (c) of the SUS430-SFM sample after oxidation at 800 ℃ in air for 140 h

    图  9   SUS430和SUS430-SFM试样在空气中于800 ℃氧化140 h后的面比电阻(ASR)

    Figure  9.   Area specific resistance (ASR) of the SUS430 and SUS430-SFM samples after oxidation in air for 140 h at 800 ℃

    图  10   实验ASR值与其他文献的对比

    Figure  10.   Comparison of ASR obtained in this paper with other literatures

    表  1   实验用SUS430不锈钢粉末的化学成分(质量分数)

    Table  1   Chemical composition of the SUS430 stainless steel powders in experimental %

    CrMnSiCSNiFe
    16.00~18.00≤1.00≤0.75≤0.12≥0.03≤0.60余量
    下载: 导出CSV
  • [1]

    Yang Z G, Xia G G, Li X H, et al. (Mn,Co)3O4 spinel coatings on ferritic stainless steels for SOFC interconnect applications. Int J Hydrogen Energy, 2007, 32(16): 3648 DOI: 10.1016/j.ijhydene.2006.08.048

    [2] 高彬, 张勇, 李振奎, 等. 金属连接体表面Y改性NiFe2O4尖晶石涂层的制备与性能. 热加工工艺, 2019, 48(2): 143

    Gao B, Zhang Y, Li Z K, et al. Preparation and properties of Y modified NiFe2O4 spinel coating on surface of metal interconnects. Hot Working Technol, 2019, 48(2): 143

    [3]

    Wu J W, Liu X B. Recent development of SOFC metallic interconnect. J Mater Sci Technol, 2010, 26(4): 293 DOI: 10.1016/S1005-0302(10)60049-7

    [4]

    Shaigan N, Qu W, Ivey D G, et al. A review of recent progress in coatings, surface modifications and alloy developments for solid oxide fuel cell ferritic stainless steel interconnects. J Power Sources, 2010, 195(6): 1529 DOI: 10.1016/j.jpowsour.2009.09.069

    [5]

    Mah J C W, Muchtar A, Somalu M R, et al. Metallic interconnects for solid oxide fuel cell: A review on protective coating and deposition techniques. Int J Hydrogen Energy, 2017, 42(14): 9219 DOI: 10.1016/j.ijhydene.2016.03.195

    [6]

    Yang X L, Tu H Y, Yu Q C. Fabrication of Co3O4 and La0.6Sr0.4CoO3‒δCe0.8Gd0.2O2‒δ dual layer coatings on SUS430 steel by in-situ phase formation for solid oxide fuel cell interconnects. Int J Hydrogen Energy, 2015, 40(1): 607 DOI: 10.1016/j.ijhydene.2014.11.021

    [7]

    Fergus J W. Metallic interconnects for solid oxide fuel cells. Mater Sci Eng A, 2005, 397(1-2): 271 DOI: 10.1016/j.msea.2005.02.047

    [8] 张鹏, 王智勇, 尚峰, 等. 两相质量比对粉末冶金双相不锈钢显微组织与力学性能的影响. 粉末冶金技术, 2020, 38(4): 269

    Zhang P, Wang Z Y, Shang F, et al. Effect of two phase mass ratio on the microstructure and mechanical properties of duplex stainless steel fabricated by powder metallurgy. Powder Metall Technol, 2020, 38(4): 269

    [9]

    Zhu W Z, Deevi S C. Development of interconnect materials for solid oxide fuel cells. Mater Sci Eng A, 2003, 348(1-2): 227 DOI: 10.1016/S0921-5093(02)00736-0

    [10]

    Evans A, Bieberle-Hütter A, Galinski H, et al. Micro-solid oxide fuel cells: status, challenges, and chances. Monatsh Chem, 2009, 140(9): 975 DOI: 10.1007/s00706-009-0107-9

    [11] 赵刚, 周小军, 张静, 等. Nb‒Ti‒Al基合金防护涂层制备及其抗氧化机理研究. 粉末冶金技术, 2017, 35(5): 347

    Zhao G, Zhou X J, Zhang J, et al. Preparation and antioxidationm echanism of Nb‒Ti‒Al based alloy protective coatings. Powder Metall Technol, 2017, 35(5): 347

    [12] 周天池, 丁江涛, 赖永彪, 等. 金属连接体用Mn‒Cu尖晶石涂层的制备及其高温氧化导电性能. 腐蚀与防护, 2020, 41(1): 9 DOI: 10.11973/fsyfh-202001002

    Zhou T C, Ding J T, Lai Y B, et al. High temperature oxidation behavior and conductivity of prepared Mn‒Cu spinel coating for metal interconnects. Corros Prot, 2020, 41(1): 9 DOI: 10.11973/fsyfh-202001002

    [13]

    Stevenson J W, Yang Z G, Xia G G, et al. Long-term oxidation behavior of spinel-coated ferritic stainless steel for solid oxide fuel cell interconnect applications. J Power Sources, 2013, 231(1-2): 256

    [14] 付倩倩, 通雁鹏. 基于曲面响应法的大气等离子喷涂La2Ce2O7涂层粒子特性与微观结构研究. 粉末冶金技术, 2020, 38(5): 13

    Fu Q Q, Tong Y P. Study on particle characteristics and microstructure of La2Ce2O7 coating by atmospheric plasma spraying based on the response surface method. Powder Metall Technol, 2020, 38(5): 13

    [15]

    Liu Q, Dong X H, Xiao G L, et al. A novel electrode material for symmetrical SOFCs. Adv Mater, 2011, 22(48): 5478

    [16]

    Muñoz-García A B, Bugaris D E, Pavone M, et al. Unveiling structure-property relationships in Sr2Fe1.5Mo0.5O6 ‒ δ, an electrode material for symmetric solid oxide guel cells. J Am Chem Soc, 2012, 43(33): 6826

    [17] 付长璟. 中温平板式 SOFC 合金连接体的制备及其性能研究[学位论文]. 哈尔滨: 哈尔滨工业大学, 2007

    Fu C J. Study on Preparation and Properties of Alloy Interconnects for Intermediate Temperature SOFC [Dissertation]. Harbin: Harbin Institute of Technology, 2007

    [18] 代宁宁. 新型Sr2Fe1.5Mo0.5O6‒δ基固体氧化物燃料电池阴极材料的研究[学位论文]. 北京: 北京理工大学, 2014

    Dai N N. Studies on Novel Solid Oxide Fuel Cell Cathode Materials Based on Sr2Fe1.5Mo0.5O6 ‒δ [Dissertation]. Beijing: Beijing Institute of Technology, 2014

    [19]

    Ebrahimifar H, Zandrahimi M. Oxidation and electrical behavior of AISI 430 coated with cobalt spinels for SOFC interconnect applications. Surf Coat Technol, 2011, 206(1): 75 DOI: 10.1016/j.surfcoat.2011.06.046

    [20]

    Wu J W, Johnson C D, Jiang Y, et al. Pulse plating of Mn‒Co alloys for SOFC interconnect applications. Electrochim Acta, 2008, 54(2): 793 DOI: 10.1016/j.electacta.2008.06.057

    [21]

    Zhang W, Yan D, Yang J, et al. A novel low Cr-containing Fe–Cr–Co alloy for metallic interconnects in planar intermediate temperature solid oxide fuel cells. J Power Sources, 2014, 271: 25 DOI: 10.1016/j.jpowsour.2014.07.170

    [22]

    Conceicao L D, Dessemond L, Djurado E, et al. Thin films of La0.7Sr0.3MnO3‒δ dip-coated on Fe‒Cr alloys for SOFC metallic interconnect. Int J Hydrogen Energy, 2013, 38(35): 15335 DOI: 10.1016/j.ijhydene.2013.09.048

    [23]

    Sun Z, Wang R, Nikiforov A Y, et al. CuMn1.8O4 protective coatings on metallic interconnects for prevention of Cr-poisoning in solid oxide fuel cells. J Power Sources, 2018, 378: 125 DOI: 10.1016/j.jpowsour.2017.12.031

    [24]

    Cheng F, Sun J. Fabrication of a double-layered Co‒Mn‒O spinel coating on stainless steel via the double glow plasma alloying process and preoxidation treatment as SOFC interconnect. Int J Hydrogen Energy, 2019, 44(33): 18415 DOI: 10.1016/j.ijhydene.2019.05.060

    [25]

    Saeidpour F, Zandrahimi M, Ebrahimifar H. Pulse electrodeposition of cobalt/zirconia coatings: oxidation and electrical performance of ferritic stainless steel interconnects. Oxid Met, 2020, 93(1): 83

图(10)  /  表(1)
计量
  • 文章访问数:  441
  • HTML全文浏览量:  127
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-21
  • 网络出版日期:  2021-03-26
  • 刊出日期:  2021-04-26

目录

    /

    返回文章
    返回