Research progress on processing of thermoelectric materials by mechanical alloying combined with spark plasma sintering
-
摘要: 近年来,热电材料研究取得重要突破,不仅传统Bi2Te3、PbTe基热电材料性能得到提升,同时还发现一批新型高性能热电材料,如SnSe、GeTe等。热电材料性能的提升不仅取决于材料成分、结构及缺陷,还与制备工艺密不可分。机械合金化(mechanical alloying,MA)结合放电等离子体烧结(spark plasma sintering,SPS)的粉末冶金技术是制备热电材料的重要方法,该方法简单、高效,获得的晶粒尺寸较小,同时可以引入纳米结构和缺陷,有助于降低晶格热导率,获得高热电性能。此外,基于机械合金化结合放电等离子体烧结技术制备出的块体材料具有更优的力学性能,可以有效地增强热电器件的使用寿命。本文介绍了机械合金化与放电等离子体烧结方法制备热电材料的基本原理和关键影响因素,并概述了利用该方法制备的碲化物、硫化物和硒化物基热电材料的研究进展。Abstract: The great progress has been made in the research of the thermoelectric (TE) materials in recent years. The thermoelectric properties of the traditional Bi2Te3 and PbTe based materials have been improved, and a series of the original high-performance thermoelectric materials, such as SnSe and GeTe, have also been discovered. The thermoelectric properties of the thermoelectric materials not only depend on the composition, structure, and defects of the materials, but also are closely related to the preparation process. Mechanical alloying (MA) combined with spark plasma sintering (SPS) is an important method to synthesize the thermoelectric materials, which is simple and efficient to obtain the fine-grained microstructures and the nanostructures, leading to the reduced lattice thermal conductivity and the enhanced thermoelectric properties. In addition, the prepared bulk materials have the better mechanical properties, which can effectively enhance the life-time of the thermoelectric devices. The basic principle and key influencing factors of the thermoelectric material preparation by mechanical alloying and spark plasma sintering were introduced in this paper, and the research progress of the telluride, sulfide, and selenide based thermoelectric materials prepared by this method was summarized.
-
钛是储量第四丰富的结构金属,具有较高的比强度、低密度、优异的生物相容性和耐腐蚀性[1‒2],被誉为“战略金属”、“第三金属”及“海洋金属”,是极具发展前景的结构材料,被广泛应用于航空航天、海洋工程、汽车工艺、医疗设备等领域[3‒5]。钛是现代重要的战略金属,在国民经济中的应用反映了一个国家的综合国力、经济实力、国防实力,是高新技术不可或缺的关键材料。目前,世界各国政府及科技界都竞相发展钛工业。我国是钛工业大国,钛资源储量占全球的48%[5]。然后,钛合金昂贵的生产成本制约了其广泛发展,如何降低钛合金的生产成本是我国“十四五”期间的重要发展方向之一。
钛合金的制备工艺主要有传统熔铸法和粉末冶金法。由于钛的熔炼温度一般为1800~2000 ℃,钛在高温下比较活泼,活性较高,在熔炼过程中易与坩埚材料发生反应,制备的钛合金中存在夹杂、成分偏析等问题[6],而且在小于882.5 ℃时,钛的晶格结构为密排六方,变形抗力大,热加工温度范围窄,加工困难。由于熔铸钛合金的组织粗大,必须经过繁复的加工锻造以保证其综合性能,造成铸锻钛合金的利用率低,生产成本高。粉末冶金是以金属粉末为原料,通过成形、烧结获得最终制品的工艺,具有近净成形的特点[7]。利用粉末冶金技术制备钛合金减少了繁复的开坯锻造过程,同时通过近净成形制坯,能缩短后续塑性加工环节,从而简化生产流程,提高材料利用率,使生产成本大幅度降低[8‒10]。粉末冶金钛合金具有晶粒细小、组织均匀、无成分偏析等优点[6,11]。
目前,粉末冶金生产钛合金的工艺根据粉末原料的不同主要分为预合金法和混合元素法两种。预合金法的钛或钛合金粉末为球形或近球形,球形钛粉的制备方法主要有雾化法、等离子旋转电极法、射频等离子球化法等,制备的粉末具有粒度均匀、比表面积小等特点[12‒14],但烧结性能较差;成形技术包括增材制造和注射成形等,烧结工艺一般为热等静压和放电等离子烧结等,粉末制备和后续烧结工艺成本都较高[15‒16]。混合元素法所用的钛粉生产工艺一般为氢化脱氢法和还原法,形状为非球形,杂质元素含量较高,成形技术一般为冷等静压成形,设备简单,生产成本低,成为近年来国内外研究的热点[17]。
钛及钛合金的使用和发展与高技术工业密切相关,传统铸锻钛合金生产成本较高,材料利用率低,阻碍了钛合金应用市场的推广。随着粉末冶金等低成本、高效率加工方法的应用,钛的市场有望增长[1,18]。因此,本文对几种钛及钛合金粉末的制备工艺进行介绍,粉末冶金钛合金的发展现状进行分析总结,并对粉末冶金钛合金的发展前景进行展望。
1. 钛及钛合金粉末制备方法
目前,钛及钛合金粉末的生产方法主要有两种,一是从钛的化合物(TiO2或TiCl4)中还原得到,但是不经过TiCl4直接从TiO2获得钛粉的方法尚未具有相当规模的产业化;二是从海绵钛或钛的铸锭中雾化、破碎获得[19]。球形钛粉的制备方法主要有雾化法、射频等离子球化法、等离子旋转电极法等,非球形钛粉的制备方法主要有氢化脱氢法、还原法等。表1总结了几种钛及钛合金粉末的制备方法、工艺及粉末特点。由于杂质元素(O、N、H)对钛合金力学性能有显著影响,生产低成本、低氧含量的钛合金粉末成为近年来的研究重点。
表 1 钛粉制备工艺Table 1. Preparation technology of the titanium powders制粉方法 原料 粉末形貌 工艺及粉末特点 氢化脱氢法 电解钛或海绵钛 不规则形状 成本低,工艺简单,粉末粒度范围宽,O、N含量高 还原法 四氯化钛或二氧化钛 海绵形 O、N等杂质含量低,纯度高,流动性好,需要后续分离过程 雾化法 钛丝 球形 杂质含量低,球形度好,粒度大小均匀,粒度较粗 射频等离子体球化法 氢化钛颗粒 球形 纯度高,表面形貌好,内部空隙少,流动性好,生产技术较难 1.1 氢化脱氢法
氢化脱氢法(hydrogenation dehydrogenization,HDH)是1955年由美国提出的,先用氢化法制得氢化物粉末,然后经过脱氢处理最终获得金属合金粉末。将钛原料在一定温度、氢气压力下进行吸氢处理,通过球磨等工艺获得氢化钛粉末,然后将获得的氢化钛粉末置于高温真空氛围内进行脱氢处理,冷却破碎后获得钛粉[20]。该方法工艺简单,原料易获得,制备的钛粉粒度分布宽,成本低,是国内外生产非球形钛粉的主要制备方法。但是,非球形钛粉的比表面积大,容易吸附间隙原子,导致氢化脱氢钛粉中O、N等间隙元素含量高,烧结相对密度低,而且在烧结过程中组织明显粗化。翁启刚等[21]以含较低杂质的电解钛为原料,经氢化、球磨、脱氢处理获得超细氢化脱氢钛粉,该工艺获得的钛粉D50为11.04 µm,氧质量分数为0.48%。粉末氧含量还是较高,无法满足实际应用需求。张策[6]突破了超细低氧氢化脱氢钛合金粉末的低氧控制技术,对氢化脱氢技术路线进行了优化,采用自制旋转氢化-脱氢炉、破碎筛分装置,粉末操作全程在氩气氛围内进行,获得的钛粉粒度范围变窄,粉末均匀性提高,氧质量分数低于0.1%,如图1所示。
1.2 还原法
还原法主要包括热还原法和电化学还原法。热还原法是利用钠、镁、钙等活泼金属将钛盐或钛的氧化物还原成钛粉的方法[19,22]。由于钛与氧的结合能力比较强,在还原过程中推动力不足,加之生成惰性中间产物,脱氧反应不彻底、难度大。范世钢等[23]采用多级深度还原法制备钛粉,以TiO2为原料、镁为还原剂,混合制得低价钛的氧化物,然后再次加入还原剂进行深度还原,用盐酸将深度还原产物浸出获得低氧钛粉。通过氧含量测试,二次还原制得的钛粉氧质量分数为0.21%,进一步降低了钛粉氧含量。万贺利等[24]将TiO2、无水CaCl2混合,充分研磨后加入还原剂钙,放入真空炉中加热进行还原反应,冷却后将还原产物用去离子水和盐酸清洗,干燥后得到钛粉。钙热还原法制得的钛粉为六方晶胞结构,具有不规则外形,颗粒大小为10~20 μm,平均纯度大于99.55%,图2为按照CaCl2、TiO2质量比1:4混合后制备的钛粉显微形貌。
1.3 雾化法
雾化法是国内外制备球形钛粉最广泛的方法,主要包括气体雾化法、超声雾化法和等离子雾化法等[25]。气体雾化法是借助高速气流对熔融金属冲击破碎快冷后得到金属粉末,是目前生产球形钛粉最普遍的方法[26]。气雾化技术的核心是雾化器。郑明月[27]总结了目前主要应用的两种自由落体式和限制式雾化器的优缺点,提出了将雾化器置于感应线圈内部的高频感应熔化气雾化模型,制备出了高品质钛粉,粉末杂质含量低、氧含量低,适用于增材制造。等离子雾化是将丝状钛或钛合金放于等离子雾化流体下,材料熔化和雾化同时进行,金属液滴在表面张力的作用下形成球形颗粒[28]。刘畅[29]自行设计了一种超音速等离子雾化工艺,对雾化喷嘴进行了有限元分析,优化了等离子喷嘴、超音速雾化喷嘴,得到了细小球形钛粉,粉末粒度集中分布在50~74 μm,符合3D打印用粉在医疗、航空等方面的要求,钛粉显微形貌如图3所示,可以出粉末非常接近球形。雾化法制备球形钛粉的细粉收得率低,价格昂贵,不利于实现钛合金的工业化生产。
1.4 射频等离子球化法
射频等离子球化技术是利用等离子体对不规则形状的粉末进行形状修饰,以制备获得球形粉末[30]。胡凯等[31]将‒325目的氢化脱氢钛粉用射频等离子体制粉系统进行球化处理,并将原始氢化脱氢钛粉和制备的球形钛粉进行形貌、性能表征,球化后的钛粉形貌和性能都有了很大的改善,并且其杂质含量也低于原始氢化脱氢钛粉。古忠涛等[32]用射频感应等离子体发生器将钛粉球化处理,所得钛粉没有物质结构和相组成的变化,通过比较处理前后粉末粒度和粒度分布,发现粉末的平均粒度没有发生变化,但是其粒度分布变窄;测定处理前后的钛粉成分,处理后的钛粉中O、N、H等元素减少,表明射频等离子球化处理可以起到提纯作用。盛艳伟等[33]以不规则形状的TiH2为原料,采用射频等离子球化处理,制得微细球形钛粉,如图4所示。粗颗粒TiH2经过等离子体区域完成氢爆、脱氢、球化的一体化过程,通过调整加料速率和载气流量,球化率可以达到100%,细粉收得率>80%,无空心粉,无卫星球,使得球形钛粉的价格大幅度降低。目前,该项技术已成功落地于江苏金物新材料有限公司,实现高品质球形钛粉的工业化生产。
2. 粉末冶金钛合金制备工艺
钛合金粉末冶金工艺主要有预合金法、混合元素法和快速凝固法[34‒35]。预合金法具有纯度高的优点,特别是氧、氮、氢等杂质含量低,但是其烧结性能差,粒度较粗,分布较宽。混合元素法粉末粒度可控,但是存在致密性差、间隙元素含量高、烧结微观形貌差等问题,严重影响了其力学性能。快速烧结法可实现快速凝固,晶粒粒度小,制品致密性好。
2.1 预合金法
预合金法是以部分或完全合金化的钛合金粉末为原料,经压制成型和致密化工艺制备钛合金的方法。预合金粉一般为球形或近球形,粉末纯度高,氧、氮、氢等杂质元素含量低。由于预合金粉末为球形,比表面积小,表面活性能小,所以烧结性能差,制备的产品相对密度低。预合金球形粉末通常与热等静压、增材制造、注射成形等近净成形工艺配合,生产成本较高,主要应用于航空航天等高端制造行业。
刘文彬等[36]以球形Ti‒6Al‒4V粉末为原料,配合热等静压致密化工艺,制备航空航天用粉末钛合金,并且研究了热等静压机温度、升温速度以及保温时间对钛合金组织、性能的影响,当热等静压温度为880 ℃时可以获得综合性能优异的钛合金。
增材制造又称3D打印技术,是先构建数字化模型,将粉末状金属、陶瓷、聚合物可粘结材料通过三维逐层打印并叠加不同形状的连续层来构建三维物体的方法[37],如图5所示。周万琳和李美华[38]通过3D扫描技术建立了以Straumann种植体为原型的种植体模型,利用选择性激光烧结技术制备了Ti‒6Al‒4V种植体,并完成精度测量与误差分析。结果显示,3D打印制备的TC4种植体具有联通的空隙,表面光洁度、空隙均匀度较Straumann种植体欠佳,但总体来说种植体表面仍具有良好的表面粗糙度和孔隙结构,可用于动物实验。
注射成形是将现代塑料注射成形技术引入粉末冶金领域而形成的一门新型粉末冶金近净形成形技术,具有零件尺寸精度高、表面光洁度好、组织均匀、性能优异等特点[39]。然而,钛合金粉末活性大、自扩散系数低,而注射成形体系多是含氧含碳的有机物,如何实现注射成形钛合金的低间隙控制和烧结致密化是目前实现注射成形钛合金工业化生产的关键突破点。
2.2 混合元素法
混合元素法是将钛粉和其他合金元素粉末在Ar气氛围内混料,得到均匀的混合合金粉末,然后通过压制成型、烧结获得钛合金试样[34]。向泽阳等[40]以钛粉、钼粉、Al‒V合金粉为原料,采用冷等静压成型、真空烧结工艺制备了TC16合金棒材,如图6所示。TC16合金具有α+β网篮组织,相对密度达到了93.5%,强度接近铸造水平,抗拉强度约为1062 MPa,屈服强度为973 MPa,伸长率约为2.3%。但是,材料的相对密度和延伸率较低,无法满足工业化应用。
陈锋等[35]采用粉末冶金法,将Ti粉和Al、Fe、Mo等元素均匀混合,通过冷等静压成型、真空烧结、热轧和退火处理,制备了Ti‒Al‒Fe‒Mo合金,具有良好的综合性能,相对密度明显提高,抗拉强度可达到1232 MPa,屈服强度为1186 MPa,延伸率和硬度分别为5%和HRC 49。涂覆TiN硬质耐磨涂层后提高了合金耐磨度,可应用于摩托车发动机用钛气门,减轻了质量,油耗也减小。但此工艺方法程序复杂,生产成本较高,市场范围小。为了突破钛合金粉末的低氧控制和烧结致密化,Zhang等[41]以TiH2粉和Al‒V中间合金粉末为原料,混合、压制、烧结后获得TA2、TC4钛合金半成品,经不同程度的热轧制后可以消除孔隙,提高了强度及塑性,与传统工艺相比,步骤简单,大大降低了钛合金生产成本。但是,由于TiH2具有氢脆性,成形性较差,不利于大体积坯体成形,且烧结过程中大量脱氢,会造成大体积压坯烧结过程中开裂。
Zhang等[41]以TiH2海绵(氢质量分数约4.3%),AlMo60中间合金颗粒,高纯度Al粉(‒200目),ZrH2粉末(≤20 μm)为原料混合后,经冷压、感应烧结和热挤压后,生产出了接近α钛合金的高密度Ti–3Al–2Zr–2Mo合金挤压棒,表现出优异的拉伸强度和延展性组合;其极限抗拉强度比普通热轧铸锭冶金样品高约130 MPa,在拉伸变形过程中没有缩颈,断裂伸长率仍与普通热轧铸锭冶金样品相当。Li等[42]以氢化脱氢Ti‒6Al‒4V粉末为原料,采用表面蚀刻处理和流化床化学气相沉积两步工艺制备了核壳结构碳纳米管/非晶碳涂层Ti‒6Al‒4V复合粉末,并采用放电等离子烧结对复合粉末进行固结,制备了一种新型界面/晶内增强钛基复合材料。与原始Ti‒6Al‒4V合金相比,添加质量分数0.25%C可使其抗压屈服强度提高500 MPa以上,摩擦系数有效降低了30%以上。
Froes等[43]和Alexander等[44]在粉末冶金中使用氢作为临时合金元素,通过氢化脱氢方法生产高质量粉末,采用旋转电极工艺制备的Ti‒6Al‒4V粉末经加氢处理后,其压制性得到改善,在较低的温度下可以更好地烧结,降低了热等静压温度,对粉末冶金产品进行热处理后细化晶粒,提高性能。Fang等[18]利用氢作为中间或过渡合金元素,在烧结过程中通过改变氢气压力来控制钛合金烧结态组织,最终达到细化晶粒的作用。最终材料的氢质量分数能够低于0.015%,相对密度在99%以上,烧结态Ti‒6Al‒4V抗拉强度为950~1000 MPa,屈服强度为880~920 MPa,延伸率15%以上。但是,目前还没有实现工业化生产。
值得说明的是,北京科技大学郭志猛团队突破了超细低氧氢化脱氢钛合金粉末的低氧控制技术,制备出超细低氧钛合金粉末[17](粒径≤10 μm,O质量分数≤0.1%),通过冷等静压、真空无压烧结制备出单件重达200~800 kg的Ti‒6Al‒4V钛合金烧结件,如图7所示。烧结件组织均匀细小,无成分偏析。烧结态Ti‒6Al‒4V的性能已达到传统铸锻钛合金的水平,其抗拉强度≥950 MPa,屈服强度≥850 MPa,延伸率≥14%,O质量分数≤0.2%,相对密度≥99%[8],达到ASTM和GB标准[45‒46],并已实现高性能粉末冶金钛合金的低成本工业化生产。这一突破必将对我们钛工业的发展起到巨大的推动作用。
2.3 快速凝固法
快速凝固法是指在大于105 K/s冷却速度下使金属熔体快速凝固的方法[47],一般是通过快速定向凝固法、热力学深过冷法、动力学急冷法三种途径实现快速凝固,合金在较大的过冷度下,晶粒来不及长大,从而可以显著细化晶粒,提高制品的相对密度[48‒49]。此工艺是在惰性气体氛围内,将海绵钛和金属锭制成钛合金,熔炼后利用基体材料的激冷作用快速凝固获得晶粒细小、组织均匀的钛合金。
Li等[50]采用快速凝固技术制备了具有细晶β组织的Ti‒Zr‒Nb‒Sn形状记忆合金纤维,在特定测试温度下可恢复应变超过7.0%,与常规固溶处理合金块相比,初纺合金纤维具有优异的超弹性和高拉伸强度的组合。Li等[51]以海绵钛(纯度99.99%)、海绵锆(纯度99.95%、Hf<2%)、铌片(纯度99.80%)和锡球(纯度99.99%)熔铸的钛锭为原料,在纯氩气气氛下进行电弧熔炼,然后通过合金熔锭的快速凝固,在钼轮边缘连续产生Ti‒18Zr‒12.5Nb‒2Sn合金纤维,具有明显的超弹性,屈服应力和滑移临界应力明显提高。
快速凝固技术具有细化晶粒,改善组织形态,提高抗疲劳性能,减少偏析,提高力学性能的优点[7]。但是钛性质活泼,需要在惰性气体氛围内熔炼,设备复杂,效率低,无法实现工厂的大规模生产。降低工艺的复杂程度,实现产业化是快速凝固技术的研究重点。
3. 发展趋势及展望
(1)粉末冶金钛及钛合金的热等静压、增材制造、注射成形在航空航天、生物医疗领域具有广泛的应用前景。所应用的粉末需要具有良好的流动性,一般为球形粉末,传统的球形粉末制造工艺设备复杂、成本高,如何进一步降低球形钛合金粉末的成本是未来研究重点。
(2)钛及钛合金粉末是制备钛合金的原料,影响粉末冶金钛合金的质量。降低粉末粒度,可获得细晶组织,改善钛合金的性能。粉末杂质含量是影响粉末性能的重要因素,特别是O、N、H等间隙元素对成形和烧结有很大影响。因此,工业化生产低间隙元素含量的钛及钛合金合金粉末是未来发展热点之一。
(3)针对钛合金难加工特点,钛合金的近净成形技术具有巨大的发展前景,包括传统压制成形、凝胶注模成形、注射成形、冷模近终成形等。在未来的钛合金成形技术上,可以将多个成形技术结合起来,利用各成形技术的优点并结合粉末特性,解决钛合金近净成形过程中的问题。
(4)钛合金作为结构材料,其板材、棒材等应用广泛。传统钛合金制备方法熔炼困难,难加工,粉末冶金技术可实现大尺寸压坯近净成形,绿色环保,可生产形状复杂的零件,具有广阔的应用前景。
-
-
[1] Bell L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 2008, 321(5895): 1457 DOI: 10.1126/science.1158899
[2] Snyder G J, Toberer E S. Complex thermoelectric materials. Nat Mater, 2008, 7(2): 105 DOI: 10.1038/nmat2090
[3] Pei Y Z, Shi X Y, Lalonde A, et al. Convergence of electronic bands for high performance bulk thermoelectrics. Nature, 2011, 473: 66 DOI: 10.1038/nature09996
[4] Zhang J, Wu D, He D S, et al. Extraordinary thermoelectric performance realized in n-type PbTe through multiphase nanostructure engineering. Adv. Mater, 2017, 29(39): 7
[5] Liu Z H, Mao J, Liu T H, et al. Nano-microstructural control of phonon engineering for thermoelectric energy harvesting. MRS Bull, 2018, 43(3): 181 DOI: 10.1557/mrs.2018.7
[6] Poudel B, Hao Q, Ma Y, et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science, 2008, 320(5876): 634 DOI: 10.1126/science.1156446
[7] Kim S I, Lee K H, Mun H A, et al. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science, 2015, 348(6230): 109 DOI: 10.1126/science.aaa4166
[8] Hu L P, Wu H J, Zhu T J, et al. Tuning multiscale microstructures to enhance thermoelectric performance of n-type bismuth-telluride-based solid solutions. Adv Energy Mater, 2015, 5(17): 13
[9] Biswas K, He J Q, Blum I D, et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature, 2012, 489(7416): 414 DOI: 10.1038/nature11439
[10] Wu H J, Zhao L D, Zheng F S, et al. Broad temperature plateau for thermoelectric figure of merit ZT>2 in phase-separated PbTe0.7S0.3. Nat Commun, 2014, 5(9): 4515
[11] Tang Y L, Gibbs Z M, Agapito L A, et al. Convergence of multi-valley bands as the electronic origin of high thermoelectric performance in CoSb3 skutterudites. Nat Mater, 2015, 14(12): 1223 DOI: 10.1038/nmat4430
[12] Wang S Y, Yang J, Wu L H, et al. On intensifying carrier impurity scattering to enhance thermoelectric performance in Cr-doped CeyCo4Sb12. Adv Funct Mater, 2015, 25(42): 6660 DOI: 10.1002/adfm.201502782
[13] Zhu T J, Fu C G, Xie H H, et al. High efficiency half-Heusler thermoelectric materials for energy harvesting. Adv Energy Mater, 2015, 5(19): 13
[14] Fu C G, Bai S Q, Liu Y T, et al. Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials. Nat Commun, 2015, 6(7): 8144
[15] Chung D Y, Hogan T, Brazis P, et al. CsBi4Te6: A high-performance thermoelectric material for low-temperature applications. Science, 2000, 287(5455): 1024 DOI: 10.1126/science.287.5455.1024
[16] Shi X, Yang J, Bai S Q, et al. On the design of high-efficiency thermoelectric clathrates through a systematic cross-substitution of framework elements. Adv Funct Mater, 2010, 20(5): 755 DOI: 10.1002/adfm.200901817
[17] Zhao L D, Lo S H, Zhang Y S, et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature, 2014, 508(7496): 373 DOI: 10.1038/nature13184
[18] Duong A T, Nguyen V Q, Duvjir G, et al. Achieving ZT = 2.2 with Bi-doped n-type SnSe single crystals. Nat Commun, 2016, 7: 6
[19] Zhao L L, Wang X L, Wang J Y, et al. Superior intrinsic thermoelectric performance with ZT of 1.8 in single-crystal and melt-quenched highly dense Cu2−xSe bulks. Sci Rep, 2015, 5: 7671 DOI: 10.1038/srep07671
[20] Zhao L D, Tan G J, Hao S Q, et al. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science, 2016, 351(6269): 141 DOI: 10.1126/science.aad3749
[21] Peng K L, Lu X, Zhan H, et al. Broad temperature plateau for high ZTs in heavily doped p-type SnSe single crystals. Energy Environ Sci, 2016, 9(2): 454 DOI: 10.1039/C5EE03366G
[22] Heremans J P. Thermoelectricity: The ugly duckling. Nature, 2014, 508(7496): 327 DOI: 10.1038/508327a
[23] Zhang X, Zhao L D. Thermoelectric materials: Energy conversion between heat and electricity. J Mater, 2015, 1(2): 92
[24] Vineis C J, Shakouri A, Majumdar A, et al. Nanostructured thermoelectrics: big efficiency gains from small features. Adv Mater, 2010, 22(36): 3970 DOI: 10.1002/adma.201000839
[25] Li J F, Liu W S, Zhao L D, et al. High-performance nanostructured thermoelectric materials. NPG Asia Mater, 2010, 2(4): 152 DOI: 10.1038/asiamat.2010.138
[26] Suryanarayana C, Ivanov E, Boldyrev V V. The science and technology of mechanical alloying. Mater Sci Eng, 2001, 304: 151
[27] Liu J, Li J F. Bi2Te3 and Bi2Te3/Nano-SiC prepared by mechanical alloying and spark plasma sintering // Key Engineering Materials. Shenzhen, 2005: 397
[28] Benjamin J S. Dispersion strengthened superalloys by mechanical alloying. Metall Trans, 1970, 1(10): 2943
[29] Benjamin J S. Fundamentals of mechanical alloying. Mater Sci Forum, 1992, 88-90: 1 DOI: 10.4028/www.scientific.net/MSF.88-90.1
[30] Benjamin J S, Volin T E. The mechanism of mechanical alloying. Metall Trans, 1974, 5(8): 1929 DOI: 10.1007/BF02644161
[31] Li J F, Pan Y, Wu C F, et al. Processing of advanced thermoelectric materials. Sci China Technol Sci, 2017, 60(9): 1347 DOI: 10.1007/s11431-017-9058-8
[32] 陈振华, 陈鼎. 机械合金化与固液反应球磨. 北京: 化学工业出版社, 2005 Chen Z H, Chen D. Mechanical Alloying and Solid Liquid Reactive Ball Milling. Beijing: Chemical Industry Press, 2005
[33] Liu Y C, Ding J X, Xu B, et al. Enhanced thermoelectric performance of La-doped BiCuSeO by tuning band structure. Appl Phys Lett, 2015, 106(23): 5
[34] Pan Y, Li J F. Thermoelectric performance enhancement in n-type Bi2(Te,Se)3 alloys owing to nanoscale inhomogeneity combined with a spark plasma-textured microstructure. NPG Asia Mater, 2016, 8(6): e275 DOI: 10.1038/am.2016.67
[35] Starý Z, Horák J, Stordeur M, et al. Antisite defects in Sb2−xBixTe3 mixed crystals. J Phys Chem Solids, 1988, 49(1): 29 DOI: 10.1016/0022-3697(88)90130-8
[36] Navrátil J, Starý Z, Plechác̆ek T. Thermoelectric properties of p-type antimony bismuth telluride alloys prepared by cold pressing. Mater Res Bull, 1996, 31(12): 1559 DOI: 10.1016/S0025-5408(96)00149-3
[37] Pan Y, Wei T R, Wu C F, et al. Electrical and thermal transport properties of spark plasma sintered n-type Bi2Te3−xSex alloys: the combined effect of point defect and Se content. J Mater Chem C, 2015, 3(40): 10583 DOI: 10.1039/C5TC02219C
[38] Dong J F, Sun F H, Tang H C, et al. Medium-temperature thermoelectric GeTe: vacancy suppression and band structure engineering leading to high performance. Energy Environ Sci, 2019, 12(4): 1396 DOI: 10.1039/C9EE00317G
[39] 刘玮书, 张波萍, 李敬锋, 等. 机械合金化合成CoSb3过程中的固相反应机理的热力学解释. 物理学报, 2006, 55(1): 465 DOI: 10.3321/j.issn:1000-3290.2006.01.082 Liu W S, Zhang B P, Li J F, et al. Thermodynamic explanation of solid-state reactions mechanism in synthesis process of CoSb3 via mechanical alloying. Acta Phys Sin, 2006, 55(1): 465 DOI: 10.3321/j.issn:1000-3290.2006.01.082
[40] Zou M M, Li J F, Guo P J, et al. Synthesis and thermoelectric properties of fine-grained FeVSb system half-Heusler compound polycrystals with high phase purity. J Phys D: Appl Phys, 2010, 43(41): 6
[41] Li Z Y, Li J F. Fine-grained and nanostructured AgPbmSbTem+2 alloys with high thermoelectric figure of merit at medium temperature. Adv Energy Mater, 2014, 4(2): 8
[42] Qin P, Qian X, Ge Z H, et al. Improvements of thermoelectric properties for p-type Cu1.8S bulk materials via optimizing the mechanical alloying process. Inorg Chem Front, 2017, 4(7): 1192 DOI: 10.1039/C7QI00208D
[43] Lux J. Improved Manufacture of Electric Incandescence Lamp Filaments from Tungsten or Molybdenum or an Alloy thereof: US Patent, 27002. 1906
[44] Inoue K. Electric-discharge Sintering: US Patent, 3241956. 1966-3-22
[45] 白玲, 葛昌纯, 沈卫平. 放电等离子烧结技术. 粉末冶金技术, 2007, 25(3): 217 DOI: 10.3321/j.issn:1001-3784.2007.03.013 Bai L, Ge C C, Shen W P. Spark plasma sintering technology. Powder Metall Technol, 2007, 25(3): 217 DOI: 10.3321/j.issn:1001-3784.2007.03.013
[46] Zhao L D, Zhang B P, Li J F, et al. Effects of process parameters on electrical properties of n-type Bi2Te3 prepared by mechanical alloying and spark plasma sintering. Physica B, 2007, 400(1-2): 11 DOI: 10.1016/j.physb.2007.06.009
[47] Wei T R, Wu C F, Sun W, et al. Is Cu3SbSe3 a promising thermoelectric material. RSC Adv, 2015, 5(53): 42848 DOI: 10.1039/C5RA03953C
[48] Omori M. Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS). Mater Sci Eng A, 2000, 287(2): 183 DOI: 10.1016/S0921-5093(00)00773-5
[49] Guillon O, Gonzalez-Julian J, Dargatz B, et al. Field-assisted sintering technology/spark plasma sintering: Mechanisms, materials, and technology developments. Adv Eng Mater, 2014, 16(7): 830 DOI: 10.1002/adem.201300409
[50] Liu H L, Shi X, Xu F F, et al. Copper ion liquid-like thermoelectrics. Nat Mater, 2012, 11(5): 422 DOI: 10.1038/nmat3273
[51] Meng Q L, Kong S, Huang Z W, et al. Simultaneous enhancement in the power factor and thermoelectric performance of copper sulfide by In2S3 doping. J Mater Chem A, 2016, 4(32): 12624 DOI: 10.1039/C6TA03780A
[52] Zhuang H L, Pan Y, Li J F, et al. Thermoelectric Cu-doped (Bi,Sb)2Te3: Performance enhancement and stability against high electric current pulse. Nano Eneygy, 2019, 60: 857
[53] 高敏, 张景韶, Rowe D M. 温差电转换及其应用. 北京: 兵器工业出版社, 1996 Gao M, Zhang J S, Rowe D M. Thermoelectric Conversion and Its Application. Beijing: The Publishing House of Ordnance Industry, 1996
[54] Chen C, Liu D W, Zhang B P, et al. Enhanced thermoelectric properties obtained by compositional optimization in p-type BixSb2−xTe3 fabricated by mechanical alloying and spark plasma sintering. J Electron Mater, 2011, 40(5): 942 DOI: 10.1007/s11664-010-1463-2
[55] Zhao L D, Wu H J, Hao S Q, et al. All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance. Energy Environ Sci, 2013, 6(11): 3346 DOI: 10.1039/c3ee42187b
[56] Zhang Q Y, Yang S Q, Zhang Q, et al. Effect of aluminum on the thermoelectric properties of nanostructured PbTe. Nanotechnology, 2013, 24(34): 345705 DOI: 10.1088/0957-4484/24/34/345705
[57] Fu L W, Cui J, Yu Y, et al. Achieving a fine balance between the strong mechanical and high thermoelectric properties of n-type PbTe-3%Sb materials by alloying PbS. J Mater Chem A, 2019, 7(11): 6304 DOI: 10.1039/C9TA00400A
[58] Hsu K F, Loo S, Guo F, et al. Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high figure of merit. Science, 2004, 303(5659): 818 DOI: 10.1126/science.1092963
[59] Kosuga A, Uno M, Kurosaki K, et al. Thermoelectric properties of stoichiometric Ag1−xPb18SbTe20(x=0, 0.1, 0.2). J Alloys Compds, 2005, 391(1-2): 288 DOI: 10.1016/j.jallcom.2004.08.049
[60] Wang H, Li J F, Nan C W, et al. High-performance Ag0.8Pb18+xSbTe20 thermoelectric bulk materials fabricated by mechanical alloying and spark plasma sintering. Appl Phys Lett, 2006, 88(9): 092104 DOI: 10.1063/1.2181197
[61] Zhou M, Li J F, Kita T. Nanostructured AgPbmSbTem+2 system bulk materials with enhanced thermoelectric performance. J Am Chem Soc, 2008, 130(13): 4527 DOI: 10.1021/ja7110652
[62] Hong M, Chen Z G, Yang L, et al. Realizing ZT of 2.3 in Ge1−x−ySbxInyTe via reducing the phase-transition temperature and introducing resonant energy doping. Adv Mater, 2018, 30(11): 8
[63] Li J, Zhang X Y, Chen Z W, et al. Low-symmetry rhombohedral GeTe thermoelectrics. Joule, 2018, 2(5): 976 DOI: 10.1016/j.joule.2018.02.016
[64] Jin Y, Zhang X X, Xiao Y. et al. Synergistically improving thermoelectric and mechanical properties of Ge0.94Bi0.06Te through dispersing nano-SiC. Scr Mater, 2020, 183: 22 DOI: 10.1016/j.scriptamat.2020.03.018
[65] He Y, Day T, Zhang T S, et al. High thermoelectric performance in non-toxic earth-abundant copper sulfide. Adv. Mater, 2014, 26(23): 3974 DOI: 10.1002/adma.201400515
[66] Zhao L L, Wang X L, Fei F Y, et al. High thermoelectric and mechanical performance in highly dense Cu2−xS bulks prepared by a melt-solidification technique. J Mater Chem A, 2015, 3(18): 9432 DOI: 10.1039/C5TA01667C
[67] Mansour B A. Electrical and thermoelectric properties of In and Cd doped Cu1.8S. Phys Status Solidi, 1993, 136(1): 153
[68] Ge Z H, Liu X Y, Feng D, et al. High-performance thermoelectricity in nanostructured earth-abundant copper sulfides bulk materials. Adv Energy Mater, 2016, 6(16): 1600607 DOI: 10.1002/aenm.201600607
[69] Tang H C, Sun F H, Dong J F, et al. Graphene network in copper sulfide leading to enhanced thermoelectric properties and thermal stability. Nano Energy, 2018, 49: 267 DOI: 10.1016/j.nanoen.2018.04.058
[70] Qin P, Ge Z H, Chen Y X, et al. Achieving high thermoelectric performance of Cu1.8S composites with WSe2 nanoparticles. Nanotechnology, 2018, 29(34): 10
[71] Suekuni K, Tsuruta K, Ariga T, et al. Thermoelectric properties of mineral tetrahedrites Cu10Tr2Sb4S13 with low thermal conductivity. Appl Phys Express, 2012, 5(5): 051201 DOI: 10.1143/APEX.5.051201
[72] Barbier T, Rollin Martinet S, Lemoine P, et al. Thermoelectric materials: a new rapid synthesis process for nontoxic and high performance tetrahedrite compounds. J Am Ceram Soc, 2016, 99(1): 51 DOI: 10.1111/jace.13838
[73] Sun F H, Wu C F, Li Z L, et al. Powder metallurgically synthesized Cu12Sb4S13 tetrahedrites: phase transition and high thermoelectricity. RSC Adv, 2017, 7(31): 18909 DOI: 10.1039/C7RA02564E
[74] Barbier T, Lemoine P, Martinet S, et al. Up-scaled synthesis process of sulphur based thermoelectric materials. RSC Adv, 2016, 6(12): 10044 DOI: 10.1039/C5RA23218J
[75] Weller D P, Stevens D L, Kunkel G E, et al. Thermoelectric performance of tetrahedrite synthesized by a modified polyol process. Chem Mater, 2017, 29(4): 1656 DOI: 10.1021/acs.chemmater.6b04950
[76] Sun F H, Dong J F, Tang H C, et al. Enhanced performance of thermoelectric nanocomposites based on Cu12Sb4S13 tetrahedrite. Nano Energy, 2019, 57: 835 DOI: 10.1016/j.nanoen.2018.12.090
[77] Zhao K P, Qiu P F, Song Q F, et al. Ultrahigh thermoelectric performance in Cu2−ySe0.5S0.5 liquid-like materials. Mater Today Phys, 2017, 1: 14 DOI: 10.1016/j.mtphys.2017.04.003
[78] Olvera A A, Moroz N A, Sahoo P, et al. Partial indium solubility induces chemical stability and colossal thermoelectric figure of merit in Cu2Se. Energy Environ Sci, 2017, 10(7): 1668 DOI: 10.1039/C7EE01193H
[79] Gahtori B, Bathula S, Tyagi K, et al. Giant enhancement in thermoelectric performance of copper selenide by incorporation of different nanoscale dimensional defect features. Nano Energy, 2015, 13: 36 DOI: 10.1016/j.nanoen.2015.02.008
[80] Chang C, Wu M H, He D S, et al. 3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals. Science, 2018, 360(6390): 778 DOI: 10.1126/science.aaq1479
[81] Chen C L, Wang H, Chen Y Y, et al. Thermoelectric properties of p-type polycrystalline SnSe doped with Ag. J Mater Chem A, 2014, 2(29): 11171 DOI: 10.1039/C4TA01643B
[82] Zhang Q, Chere E K, Sun J Y, et al. Studies on thermoelectric properties of n-type polycrystalline SnSe1−xSx by iodine doping. Adv Energy Mater, 2015, 5(12): 1500360 DOI: 10.1002/aenm.201500360
-
期刊类型引用(9)
1. 解传娣. 粉末冶金钛合金的制备工艺探究. 信息记录材料. 2024(01): 17-19 . 百度学术
2. 班伟,陈嘉琪,刘璐璐,葛涛,张帅. 紧耦合气雾化喷嘴流场特性研究. 粉末冶金技术. 2024(03): 312-319 . 本站查看
3. 洪周怡,张振建,王煜兵,徐周毅,郭伟,杭纬. 激光溅射电离飞行时间质谱快速定量分析钛合金中的氢. 质谱学报. 2024(04): 457-464 . 百度学术
4. 何艺霖,徐健淋,马占山,庞忠亚,朱福兴,邹星礼,鲁雄刚. 熔盐氯化用熔体组分对体系物性的影响研究. 钢铁钒钛. 2024(04): 8-15+28 . 百度学术
5. 王凯,车立达,吕周晋,李好峰,李向阳. 热等静压粉末冶金技术制备高合金冷作模具钢应用研究. 金属加工(热加工). 2024(10): 124-130 . 百度学术
6. 江新飞,陈超,李从德,张飞龙,邹凯,王静. 攀西某微细粒钛铁矿浮选工艺试验. 现代矿业. 2024(09): 171-174+179 . 百度学术
7. 孙立臣,谷文金,祝忠民,龚立国. 电动工具用粉末冶金手紧丝母模具设计. 粉末冶金技术. 2024(05): 533-539 . 本站查看
8. 许莹,赵散玉,夏朋昭,何曜腾,武泽倩,蔡艳青. 造孔剂对医用多孔Ti/16Mg复合材料组织性能的影响. 粉末冶金技术. 2024(06): 621-631 . 本站查看
9. 郝旭,张德印,贾宝瑞,吴昊阳,马志俊,王帅帅,张鹏程,秦明礼,曲选辉. 粉末冶金法制备高速钢研究进展. 粉末冶金技术. 2024(06): 665-673 . 本站查看
其他类型引用(1)