高级检索

高品级氮化铝粉体及其碳热还原氮化工艺研究进展

秦运璞, 张智睿, 赵勇智, 王永, 刘鸾, 张一铭, 徐海峰, 吉晓霞, 张泽鹏, 王月隆, 何庆, 鲁慧峰, 张德印, 吴昊阳, 浦恩祥, 贾宝瑞, 曲选辉, 秦明礼

秦运璞, 张智睿, 赵勇智, 王永, 刘鸾, 张一铭, 徐海峰, 吉晓霞, 张泽鹏, 王月隆, 何庆, 鲁慧峰, 张德印, 吴昊阳, 浦恩祥, 贾宝瑞, 曲选辉, 秦明礼. 高品级氮化铝粉体及其碳热还原氮化工艺研究进展[J]. 粉末冶金技术, 2024, 42(3): 215-225. DOI: 10.19591/j.cnki.cn11-1974/tf.2022070006
引用本文: 秦运璞, 张智睿, 赵勇智, 王永, 刘鸾, 张一铭, 徐海峰, 吉晓霞, 张泽鹏, 王月隆, 何庆, 鲁慧峰, 张德印, 吴昊阳, 浦恩祥, 贾宝瑞, 曲选辉, 秦明礼. 高品级氮化铝粉体及其碳热还原氮化工艺研究进展[J]. 粉末冶金技术, 2024, 42(3): 215-225. DOI: 10.19591/j.cnki.cn11-1974/tf.2022070006
QIN Yunpu, ZHANG Zhirui, ZHAO Yongzhi, WANG Yong, LIU Luan, ZHANG Yiming, XU Haifeng, JI Xiaoxia, ZHANG Zepeng, WANG Yuelong, HE Qing, LU Huifeng, ZHANG Deyin, WU Haoyang, PU Enxiang, JIA Baorui, QU Xuanhui, QIN Mingli. Research progress on high grade aluminum nitride powder and its carbothermal reduction-nitridation preparation[J]. Powder Metallurgy Technology, 2024, 42(3): 215-225. DOI: 10.19591/j.cnki.cn11-1974/tf.2022070006
Citation: QIN Yunpu, ZHANG Zhirui, ZHAO Yongzhi, WANG Yong, LIU Luan, ZHANG Yiming, XU Haifeng, JI Xiaoxia, ZHANG Zepeng, WANG Yuelong, HE Qing, LU Huifeng, ZHANG Deyin, WU Haoyang, PU Enxiang, JIA Baorui, QU Xuanhui, QIN Mingli. Research progress on high grade aluminum nitride powder and its carbothermal reduction-nitridation preparation[J]. Powder Metallurgy Technology, 2024, 42(3): 215-225. DOI: 10.19591/j.cnki.cn11-1974/tf.2022070006

高品级氮化铝粉体及其碳热还原氮化工艺研究进展

基金项目: 国家自然科学基金资助项目(51774035);河北省省级科技计划资助项目(20311001D)
详细信息
    通讯作者:

    E-mail: jiabaorui@ustb.edu.cn(贾宝瑞)

    qinml@mater.ustb.edu.cn(秦明礼)

  • 中图分类号: TF123;TG142.71

Research progress on high grade aluminum nitride powder and its carbothermal reduction-nitridation preparation

More Information
  • 摘要:

    氮化铝(AlN)具有高导热、绝缘、低膨胀、无磁等优异性能,是半导体、电真空等领域高端装备的关键材料,特别是在航空航天、轨道交通、新能源装备、高功率LED、5G通讯、电力传输、工业控制等领域功率器件中具有不可取代的作用。高品级粉体是制备高性能陶瓷的基础,氮化铝粉体的性质直接影响了后续成形、烧结等工艺以及材料的组织和性能。碳热还原氮化法制备氮化铝粉体具有纯度高、粒度细和烧结性好等特点,本文综述了氮化铝粉末的评价指标以及碳热还原氮化法制备氮化铝粉末的研究进展,提出未来研究与产业化的方向与趋势。

    Abstract:

    Aluminum nitride (AlN) has high thermal conductivity, good insulation, low thermal expansion coefficient, non-magnetic, and other excellent properties used as a key material for high-end equipment in semiconductor, electric vacuum, and other fields. Especially in aerospace, rail transportation, new energy equipment, high-power LED, 5G communication, power transmission, industrial control, and other fields of power devices, AlN has an irreplaceable role. The high-grade powders are the basis for the preparation of high-performance ceramics. The properties of AlN powders directly affect the forming, sintering, microstructure, and performance of the AlN ceramics. Carbothermal reduction-nitridation method is a promising method to produce the AlN powders with high purity, fine particle size, and high sintering property. The evaluation indexes of the AlN powders and the research progress on the carbothermal reduction-nitridation of AlN powders were reviewed in this paper, and the direction and trend of future research and industrialization were proposed.

  • W–Cu复合材料兼具W和Cu的特性,具有高熔点、高导热、高硬度、高导电、低膨胀系数等优点,被广泛应用于电子信息、核工业、航空航天、军事国防等领域[15]。随着电子信息、航空航天及核工业等领域的快速发展,W–Cu复合材料需要应对更高的温度和温度差。航天飞机中的某些部件要承受2000 ℃的高温,同时某些部件一侧在承受高温的同时,另一侧需要液氢冷却,两侧温差达1000 ℃。由于W、Cu熔点相差大,互不相溶且不反应,热膨胀系数和杨氏模量差异较大,在高温或者温差较大的工况下,W–Cu复合材料界面热应力较大,容易产生裂纹,导致材料失效。

    W–Cu梯度复合材料一侧由Cu含量高的W–Cu复合材料(或纯Cu)构成,另一侧由W含量高的W–Cu复合材料(或纯W)构成,中间设置梯度变化的W–Cu层。W–Cu梯度复合材料既保持了W、Cu单一材料的优点,且成分的连续变化使界面结合良好,材料整体力学性能得到提高,实现对热应力的缓冲。目前常用的制备方法有熔渗法、化学气相沉积法、等离子喷涂法、热压烧结、微波烧结等[68]。但诸多方法有各自的优缺点,常规的梯度W骨架渗铜工艺易在组织内形成闭孔,等离子喷涂法制备的W–Cu复合材料结合强度低,且容易剥落。放电等离子烧结(spark plasma sintering,SPS)将等离子活化、热压、电阻加热相结合,具有烧结迅速、晶粒细小均匀、产品相对密度高等优势,烧结时间更短,烧结温度较热压烧结可降低200~300 ℃。采用放电等离子烧结工艺制备W–Cu梯度材料时,烧结速度快,可以保持原始的梯度成分设计。放电等离子烧结的温度低于铜的熔点,放电活化可以使铜层表面熔化,实现粉体的烧结致密化。这样可以保持原始的梯度成分设计,防止大粒径铜粉处于熔融状态而使梯度成分发生扩散。诸多研究者采用放电等离子烧结制备W–Cu梯度复合材料[914]。卢尚智等[3]通过化学共沉淀和放电等离子烧结制备了W–Cu纳米复合块体材料,通过添加微量Ni粉(质量分数0.5%)使复合材料分布均匀,相对密度达到97.7%。Chaubey等[9]通过放电等离子烧结制备了七层的W–Cu梯度复合材料,复合材料界面结合良好,制备的样品表现出优异的力学和物理性能。

    为满足电子信息技术、机械工程等行业发展升级的需要,本文设计制备了不同W、Cu成分梯度复合材料,研究了复合材料的显微组织、界面特征、物理性能、力学性能及抗热震性能等,分析了烧结温度对复合材料组织性能的影响,对提升我国军事和航空航天领域的材料开发能力具有重要意义。

    实验用W粉和Cu粉均采购于南宫市锐腾合金有限公司,其中W粉粒度为50 μm,Cu粉为气雾化制粉和电解铜粉,气雾化制粉的粒度为100 μm,电解铜粉的粒度为10 μm。W–Cu粉末成分如表1所示,其中100 μm粒度Cu粉和10 μm粒度Cu粉的比例为3:1。混粉转速为200 r·min−1,时间为12 h。W–Cu梯度复合材料制备流程如图1所示,将混合后的W–Cu粉末按不同梯度放置于石墨模具,再通过SPS–30放电等离子烧结机烧结得到W–Cu梯度复合材料。放电等离子烧结温度分别为800 ℃、900 ℃,烧结压力30 MPa,保温时间5 min,烧结后样品直径为30 mm。

    表  1  W–Cu梯度复合材料各层成分配比
    Table  1.  Composition ratio of each layer of W–Cu graded composites
    梯度层W体积分数 / %W质量分数 / %Cu体积分数 / %Cu质量分数 / %
    W–80Cu2035.28064.8
    W–60Cu4055.06045.0
    W–40Cu6076.54023.5
    下载: 导出CSV 
    | 显示表格
    图  1  W–Cu梯度复合材料制备示意图
    Figure  1.  Schematic diagram of the W–Cu graded composite preparation

    采用ZEISS SIGMA 300扫描电镜(scanning electron microscope,SEM)观察W粉、Cu粉以及混合后W–Cu粉的显微形貌。线切割W–Cu梯度复合材料金相试样,经砂纸(400目、1000目、2000目)打磨后用金刚石悬浮抛光液(3 μm、1 μm)抛光,经无水乙醇冲洗吹干后,在扫描电镜下观察微观组织。复合材料的密度通过阿基米德法计算,复合材料的理论密度通过复合材料的混合定律计算。复合材料的显微硬度使用HV-1000维氏显微硬度计测量,压头载荷为500 g,保压时间10 s,每个样品测10个点,取平均值。复合材料的力学性能通过压缩实验进行测试,压缩试样的尺寸按照国标GB–T7314进行切样,在DNS2000型拉伸压缩实验机上测试复合材料的压缩强度,压缩速率为2 mm·min−1。通过PPMS-9测量系统对样品热导率进行测试,试样直径为3 mm,高度为5 mm。复合材料的抗热震性能通过水淬法测试,将试样置入热处理炉中,800 ℃保温0.5 h后淬火,重复5次。淬火后的样品经打磨抛光,在金相显微镜下观察复合材料的宏观形貌和界面组织变化。

    图2为原始Cu粉、W粉的扫描电子显微形貌。从图2可以看出,粒度100 μm的Cu粉形貌为球形,粒度10 μm的Cu粉为不规则形貌,粒度50 μm的W粉为规则的多边形。图3为混合后W–Cu粉的扫描电子显微形貌,如图3所示,经过混合后的W–Cu粉混合均匀,小粒径的铜粉包覆于大粒径Cu粉和W粉表面,部分W颗粒未被分散均匀。小粒径的铜粉可以更好填充于W粉、Cu粉的间隙中,在放电等离子烧结过程中,细小的铜粉熔融,充当了复合材料中连接剂。

    图  2  原始Cu粉和W粉扫描电子显微形貌:(a)100 μm的Cu粉;(b)10 μm的Cu粉;(3)W粉
    Figure  2.  SEM images of the primary Cu powders and W powders: (a) 100 μm Cu powders; (b) 10 μm Cu powders; (3) W powders
    图  3  混合后W–Cu粉的扫描电子显微形貌:(a)W–80Cu;(b)W–60Cu;(c)W–40Cu
    Figure  3.  SEM images of the mixed W–Cu powders: (a) W–80Cu; (b) W–60Cu; (c) W–40Cu

    图4为800 ℃、900 ℃下烧结制备三层W–Cu梯度复合材料的扫描电子显微形貌。图4中白色的组织为W颗粒,黑色的组织为Cu颗粒。W–Cu梯度复合材料形成了均匀的梯度层,每层中的W、Cu分布均匀,W颗粒均匀分布于Cu颗粒周围。图4(g)和图4(h)中的虚线为界面分界线,梯度层界面处无间隙及裂纹,梯度层结合紧密。在相同烧结温度下,W–80Cu梯度层的孔隙最少,W–40Cu梯度层孔隙最多。这主要是由于Cu含量的升高使复合材料烧结更致密,孔隙变少。由图4对比可知,成分相同的复合材料经900 ℃烧结后梯度层中孔隙更少。这是由于温度升高后,更多的Cu粉表面处于熔融状态,可以更好的填充于粉末之间的孔隙,使复合材料的相对密度升高。图5为900 ℃烧结W–60Cu复合材料能谱分析(energy disperse spectroscope,EDS)以及不同烧结温度界面层的显微形貌。由图5(a)和图5(b)知,细小的Cu粉填充了W粉的孔隙,充当了复合材料中连接剂,使复合材料的相对密度升高。未被分散均匀的W粉,在W粉和W粉连接处容易形成闭孔。由图5(c)和图5(d)知,在烧结过程中,W、Cu之间未发生元素扩散。

    图  4  不同烧结温度制备的W–Cu梯度复合材料微观形貌:(a)W–80Cu,800 ℃;(b)W–60Cu,800 ℃;(c)W–40Cu,800 ℃;(d)W–80Cu,900 ℃;(e)W–60Cu,900 ℃;(f)W–40Cu,900 ℃;(g)W–80Cu/W–60Cu,900 ℃;(h)W–60Cu/W–40Cu,900 ℃
    Figure  4.  SEM images of the W–Cu graded composites prepared at different sintering temperatures: (a) W–80Cu, 800 ℃; (b) W–60Cu, 800 ℃; (c) W–40Cu, 800 ℃; (d) W–80Cu, 900 ℃; (e) W–60Cu, 900 ℃; (f) W–40Cu, 900 ℃; (g) W–80Cu/W–60Cu, 900 ℃; (h) W–60Cu/W–40Cu, 900 ℃
    图  5  不同烧结温度制备的W–60Cu梯度复合材料界面层微观形貌:(a)W–60Cu,900 ℃;(b)图(a)能谱分析;(c)900 ℃;(d)800 ℃
    Figure  5.  SEM images of the W–60Cu interface layers: (a) W–60Cu, 900 ℃; (b) EDS analysis of Fig.5(a); (c) 800 ℃; (d) 900 ℃

    图6为W–Cu梯度复合材料的相对密度。由6图可知,800 ℃和900 ℃烧结制备的梯度复合材料相对密度分别为85%、95%。本实验选取800 ℃、900 ℃两个烧结温度,是由于放电等离子烧结的特性,在此烧结温度下Cu粉会出现表面熔融的状态,在烧结过程中主要依靠此Cu粉的部分熔融实现W颗粒的重排。在实验设计中添加了小粒径的Cu粉,在混粉后粘附于大颗粒Cu粉和W粉周围,在烧结过程小粒径的Cu粉表面熔融,实现W–Cu梯度复合材料的烧结致密。由图4知,在两种烧结温度下,随着Cu含量的增加,气孔明显减少,表明Cu可以实现W颗粒的重排及烧结致密化。800 ℃烧结时相对密度较低,主要由于温度低时,W、Cu之间的润湿性低且Cu未出现大量液相,且流动性较差,导致Cu未充分填充W–W晶粒间的孔隙,使复合材料烧结不够致密。与之相反,烧结温度升高时,Cu的粘度降低,局部的流动性升高,烧结过程更快地填充了W–Cu之间的空隙,降低了W粉之间接触的机会,使W、Cu颗粒的重排得以充分进行,提高致密化速度[1517]

    图  6  W–Cu梯度复合材料的相对密度
    Figure  6.  Relative Density of W–Cu graded composites

    图7为W–Cu梯度复合材料的压缩应力–应变曲线,图8为W–Cu梯度复合材料各梯度层的显微硬度。由图7可知,W–Cu梯度复合材料的压缩曲线分为五个阶段:弹性阶段、屈服阶段、W–40Cu断裂阶段、W–60Cu断裂阶段、W–80Cu压缩阶段。在800 ℃和900 ℃烧结时,复合材料的压缩屈服强度分别为208 MPa和332 MPa。由于烧结温度远低于W的熔化温度,复合材料的连接主要由Cu的熔融实现。由于W的硬度远大于Cu,塑性弱于Cu,当受力达到一定值时,W含量高的梯度层更容易断裂,而Cu含量更高的梯度层屈服强度更好。因此,W–Cu梯度复合材料中的W–40Cu层最先断裂,W–60Cu层次之,而含铜量高的W–80Cu层具有较好的塑性。由图8可知,900 ℃烧结制备的复合材料强度显著高于800 ℃,这主要是由于900 ℃烧结时,复合材料的相对密度更高,孔隙更少,复合材料强度更高。由图8可知,W–40Cu层的显微硬度最高,W–80Cu的显微硬度最低。当烧结温度为900 ℃,各梯度层的显微硬度最高分别为HV 85、HV 106、HV 136。这主要是由于W、Cu之间的硬度差异所导致,虽然W–40Cu层的孔隙较多,但是更高的W含量使其具有更高的硬度和更低的塑形。

    图  7  W–Cu梯度复合材料的压缩应力–应变曲线
    Figure  7.  Compressive stress–strain curves of the W–Cu graded composites
    图  8  W–Cu梯度复合材料的显微硬度
    Figure  8.  Microhardness of the W–Cu graded composites

    800 ℃和900 ℃烧结制备的W–Cu梯度复合材料热导率分别为158 W·m−1·K−1、202 W·m−1·K−1。900 ℃烧结制备的W–Cu梯度复合材料的热导率更优异,导致该现象的因素主要有两个[1821]。一是复合材料的相对密度,复合材料的相对密度越高,孔隙率越低,材料的导热性能越好;二是Cu在复合材料中的分布状态,Cu在W中形成连续网状结构,可以为复合材料提供良好的导热通道,提升复合材料的导热性能。通过前面对W–Cu复合材料的致密化和显微组织分析可以得知,800 ℃烧结的复合材料相对密度较差,孔洞较多。虽然复合材料中Cu形成了较为理想的网络结构,但热导率依然比较低。

    图9为800 ℃、900 ℃烧结制备的W–Cu梯度复合材料经热震后的宏观形貌和金相组织。由图9可以看到,复合材料未出现开裂,界面处未发现裂纹。这是因为W–Cu梯度复合材料各个梯度层中形成理想的Cu网格结构,并贯穿其中,材料界面处结合强度高,加之Cu的塑性较好,微裂纹萌生发展难以进行,因此,梯度层之间无裂纹萌生,抗热震性较好。在热震测试后W–40Cu层产生了较多孔隙,这主要是由于W、Cu热膨胀系数差别大,热震后部分W颗粒发生剥落所致。

    图  9  W–Cu梯度复合材料热震金相组织:(a)W–40Cu/W–60Cu,800 ℃;(b)W–60Cu/W–80Cu,800 ℃;(c)W–40Cu/W–60Cu,900 ℃;(d)W–60Cu/W–80Cu,900 ℃
    Figure  9.  Metallographic images of the W–Cu graded composites after thermal shock: (a) W–40Cu/W–60Cu, 800 ℃; (b) W–60Cu/W–80Cu, 800 ℃; (c) W–40Cu/W–60Cu, 900 ℃; (d) W–60Cu/W–80Cu, 900 ℃

    (1)900 ℃烧结制备的W–Cu梯度复合材料既保证了材料的相对密度,同时也保持了单层的原始设计成分。每个梯度层中W、Cu分布较均匀,小尺寸的铜粉填充了W粉中的孔隙,复合材料界面结合良好,W、Cu之间未发生扩散。

    (2)W–Cu梯度复合材料的力学性能呈梯度分布,W–40Cu层的显微硬度最高,为HV 136。在压缩过程中,W–40Cu优先发生断裂,W–Cu梯度复合材料的最高压缩屈服强度为332 MPa。

    (3)900 ℃烧结制备的W–Cu梯度复合材料的热导率为202 W·m−1·K−1,复合材料获得了较好的导热性能。W–Cu梯度复合材料经抗热震实验后,材料内部无开裂,界面处无裂纹,具有良好的抗热震性能。

  • 图  1   不同粒径对AlN烧结行为的影响[14]

    Figure  1.   Effects of the particle sizes on the sintering behavior of AlN[14]

    图  2   不同粒度和粒度分布的AlN粉末微观形貌[15]:(a)3.17 m2·g−1;(b)3.42 m2·g−1;(c)2.15 m2·g−1;(d)3.63 m2·g−1;(e)4.01 m2·g−1;(f)2.18 m2·g−1

    Figure  2.   SEM images of the AlN powders in different particle sizes and size distributions[15]: (a) 3.17 m2·g−1; (b) 3.42 m2·g−1; (c) 2.15 m2·g−1; (d) 3.63 m2·g−1; (e) 4.01 m2·g−1; (f) 2.18 m2·g−1

    图  3   杂质含量对无压烧结AlN热导率的影响[32]

    Figure  3.   Effect of the impurity content on the thermal conductivity of pressureless-sintered AlN[32]

    图  4   不同铝源的氮化反应活性[48]:(a)AlCl3;(b)Al2(SO4)3;(c)Al(NO3)3

    Figure  4.   Nitridation reactivity in the various aluminum sources[48]: (a) AlCl3; (b) Al2(SO4)3; (c) Al(NO3)3

    图  5   不同铝源在1550 ℃下煅烧2 h氮化产物微观形貌[48]:(a)AlCl3;(b)Al2(SO4)3;(c)Al(NO3)3

    Figure  5.   SEM images of the nitridation products calcined at 1550 ℃ for 2 h in various aluminum sources[48]: (a) AlCl3; (b) Al2(SO4)3; (c) Al(NO3)3

    图  6   AlN转化率与反应温度的关系[50]

    Figure  6.   Relationship between the conversion ratio and reaction temperature for AlN[50]

    图  7   不同碳源合成的氮化铝粉末的微观形貌:(a)葡萄糖;(b)蔗糖;(c)水溶性淀粉;(d)柠檬酸;(e)炭黑[50]

    Figure  7.   SEM images of AlN powders synthesized from different carbon sources: (a) glucose; (b) sucrose; (c) water-soluble starch; (d) citric acid; (e) carbon black[50]

    图  8   不同碳源在1700 ℃下煅烧2 h的氮化产物显微形貌[20]:(a)蔗糖;(b)炭黑

    Figure  8.   SEM images of the nitridation products calcined at 1700 ℃ for 2 h in various carbon sources[20]: (a) sucrose; (b) carbon black

    图  9   AlN转化率与添加剂的关系[51]

    Figure  9.   Relationship between the AlN conversion and additives[51]

    图  10   脱碳AlN粉末的场发射扫描电子显微镜图像[57]

    Figure  10.   Field emission scanning electron microscope (FESEM) images of the decarburized AlN powders[57]

    图  11   前驱体(a)和煅烧后(b)样品微观形貌[18]

    Figure  11.   SEM images of the precursor (a) and the calcined product (b)[18]

    表  1   不同氧含量的氮化铝粉末制备烧结体的热导率[32]

    Table  1   Thermal conductivity of the sintered AlN powders with different oxygen content[32]

    原始粉体中氧质量分数 / %烧结条件烧结体
    烧结方式添加剂温度 / ℃时间 / h氧质量分数 / %热导率 / (W·m−1·K−1)
    1.0热压烧结200030.9080
    8.0热压烧结200037.3020
    1.0常压烧结+190030.26131
    3.7常压烧结+190032.1082
    注:添加剂中“+”表示添加含质量分数1% CaO的Ca(NO3)2
    下载: 导出CSV

    表  2   国内外企业AlN粉末性能指标对比

    Table  2   Comparison of the evaluation metrics for AlN powders from domestic and foreign enterprises

    生产厂家 级别 化学成分(质量分数) / % 杂质含量 / (×10−6) 比表面积 / (m2·g−1) 平均粒径 / μm 制造方法
    O C Fe Si Ca
    德山曹达 E 0.80 0.022~0.032 6 10 10 3.40 1.00 碳热还原法
    H 0.80 0.013~0.027 10 25 200 2.60 1.20 碳热还原法
    东洋铝 JC 0.90 15 30 0 2.80 1.20 直接氮化法
    JD 0.90 15 30 200 2.80 1.20 直接氮化法
    Surmet A100 <1.50 <0.150 <100 <200 2.30~3.50 2.00~4.00 碳热还原法
    钜瓷科技 M-S 0.70~0.90 0.024~0.032 <10 <10 <10 2.60~2.80 0.70~1.00 碳热还原法
    M-G 0.60~0.90 0.020~0.030 <10 <30 80~140 2.50~2.70 1.00~1.50 碳热还原法
    宁夏艾森达 A-1 ≤0.95 ≤0.035 ≤20 ≤50 ≤100 >3.00 <1.50 碳热还原法
    A-2 ≤1.35 ≤0.040 ≤30 ≤70 ≤300 >2.00 <1.70 碳热还原法
    百高新图 TA-1-C 0.89 ≤0.050 ≤10 ≤20 ≤20 3.00 0.93 碳热还原法
    TA-3-C 0.78 ≤0.050 ≤50 ≤100 ≤200 2.19 1.09 碳热还原法
    福建臻璟 ZJYF-01 ≤0.80 ≤0.050 ≤20 ≤50 ≤250 ≥2.50 1.05~1.35 碳热还原法
    下载: 导出CSV

    表  3   不同碳源在前驱体制备过程中的燃烧现象以及在氮化过程中的相变行为[50]

    Table  3   Combustion phenomenon in different carbon sources during the preparation of precursor system and the phase transformation behavior during nitriding[50]

    碳源燃烧现象反应温度 / ℃
    12001300140015001600
    葡萄糖缓慢燃烧γ-Al2O3γ-Al2O3,AlNAlNAlNAlN
    蔗糖缓慢燃烧γ-Al2O3γ-Al2O3,AlNAlNAlNAlN
    水溶性淀粉缓慢燃烧γ-Al2O3γ-Al2O3,AlNAlNAlNAlN
    柠檬酸缓慢燃烧γ-Al2O3γ-Al2O3,AlNAlNAlNAlN
    炭黑剧烈燃烧α-Al2O3α-Al2O3,AlNα-Al2O3,AlNAlNAlN
    下载: 导出CSV
  • [1] 谢曼, 干勇, 王慧. 面向2035的新材料强国战略研究. 中国工程科学, 2020, 22(5): 1 DOI: 10.15302/J-SSCAE-2020.05.001

    Xie M, Gan Y, Wang H. Research on new material power strategy by 2035. Strat Study CAE, 2020, 22(5): 1 DOI: 10.15302/J-SSCAE-2020.05.001

    [2]

    Slack G A, Tanzilli R A, Pohl R O, et al. The intrinsic thermal conductivity of AIN. J Phys Chem Solids, 1987, 48(7): 641 DOI: 10.1016/0022-3697(87)90153-3

    [3]

    Kanechika Y. Manufacturing technology of aluminum nitride powder and application development. J Jpn Soc Powder Powder Metall, 2021, 68(12): 511 DOI: 10.2497/jjspm.68.511

    [4]

    Qin M L, Lu H F, Wu H Y, et al. Powder injection molding of complex-shaped aluminium nitride ceramic with high thermal conductivity. J Eur Ceram Soc, 2019, 39(4): 952 DOI: 10.1016/j.jeurceramsoc.2018.11.037

    [5] 张智睿, 秦明礼, 吴昊阳, 等. 氮化铝粉末制备方法及研究进展. 粉末冶金技术, 2021, 39(4): 373

    Zhang Z R, Qin M L, Wu H Y, et al. Research progress and preparation method of aluminum nitride powder. Powder Metall Technol, 2021, 39(4): 373

    [6] 何端鹏, 黄雪吟, 任刚, 等. 高热导电绝缘氮化铝陶瓷在宇航器件中的应用: 概述, 挑战和展望. 硅酸盐学报, 2022, 50(6): 1701

    He D P, Huang X Y, Ren G, et al. Development on high thermal conductive and electric insulative AlN ceramics in aerospace devices. J Chin Ceram Soc, 2022, 50(6): 1701

    [7]

    Wang Z Y, Cai S, Luo L P, et al. Corrosion resistance of AlN-based ceramics to molten uranium. Ceram Int, 2022, 48(7): 9544 DOI: 10.1016/j.ceramint.2021.12.152

    [8]

    Kartavykh A V, Tcherdyntsev V V, Zollinger J. TiAl–Nb melt interaction with AlN refractory crucibles. Mater Chem Phys, 2009, 116(1): 300 DOI: 10.1016/j.matchemphys.2009.03.032

    [9]

    Xiang M, Zhou Y F, Xu W T, et al. Transparent AlN ceramics sintered from nanopowders produced by the wet chemical method. J Ceram Soc Jpn, 2018, 126(4): 241 DOI: 10.2109/jcersj2.17271

    [10] 王子君, 周文英, 睢雪珍, 等. 导热橡胶复合材料研究进展. 橡胶工业, 2015, 62(8): 505 DOI: 10.3969/j.issn.1000-890X.2015.08.011

    Wang Z J, Zhou W Y, Sui X Z, et al. Advances in research on thermally conductive rubber composites. China Rubber Ind, 2015, 62(8): 505 DOI: 10.3969/j.issn.1000-890X.2015.08.011

    [11]

    Kuramoto A, Fukunaga Y, Imoto Y, et al. High thermal conductivity AlN fillers using carbo-thermal-reduction and nitridation process. Trans Jpn Inst Electron Packag, 2019, 12: E18-003-1

    [12]

    Harris J H, Youngman R A, Teller R G. On the nature of the oxygen-related defect in aluminum nitride. J Mater Res, 1990, 5(8): 1763 DOI: 10.1557/JMR.1990.1763

    [13]

    Slack G A. Nonmetallic crystals with high thermal conductivity. J Phys Chem Solids, 1973, 34(2): 321 DOI: 10.1016/0022-3697(73)90092-9

    [14]

    Hashimoto N, Yoden H, Deki S. Sintering behavior of fine aluminum nitride powder synthesized from aluminum polynuclear complexes. J Am Ceram Soc, 1992, 75(8): 2098 DOI: 10.1111/j.1151-2916.1992.tb04471.x

    [15]

    Iwamoto Y, Kuibira A, Sugiura I, et al. Effect of powder properties on thermal conductivity of aluminum nitride. J Ceram Soc Jpn, 1992, 100(5): 652

    [16]

    Zhang D, Mylsamy G, Yang X X, et al. High purity and good dispersity AlN nanoparticles synthesized by an arc discharge with assistance of direct nitridation. Ceram Int, 2021, 47(12): 16972 DOI: 10.1016/j.ceramint.2021.03.006

    [17]

    Jia L, Kondoh K, Imai H, et al. Nano-scale AlN powders and AlN/Al composites by full and partial direct nitridation of aluminum in solid-state. J Alloys Compd, 2015, 629: 184 DOI: 10.1016/j.jallcom.2014.12.220

    [18]

    Xu J H, Wang H, Zhao Z J. Preparation of spherical AlN powders by combined microemulsion method and carbothermal method. Ceram Int, 2019, 45(10): 12708 DOI: 10.1016/j.ceramint.2019.03.129

    [19]

    Xiang M, Zhou Y F, Xu W T, et al. Hydrothermal-carbothermal synthesis of highly sinterable AlN nanopowders. J Am Ceram Soc, 2017, 100(6): 2482 DOI: 10.1111/jace.14752

    [20]

    Wang Q, Kuang J L, Jiang P, et al. Carbothermal synthesis of spherical AlN particles using sucrose as carbon source. Ceram Int, 2018, 44(3): 3480 DOI: 10.1016/j.ceramint.2017.11.056

    [21]

    Xu Y L, Zhou Z Q, Chen X M, et al. Ultrafine AlN synthesis by alumina carbothermal reduction under vacuum: Mechanism and experimental study. Powder Technol, 2021, 377: 843 DOI: 10.1016/j.powtec.2020.09.066

    [22]

    Chu A M, Zhao Y P, Rafi-ud-din, et al. Carbon-containing droplet combustion–carbothermal synthesis of well-distributed AlN nanometer powders. J Am Ceram Soc, 2022, 105(10): 5999 DOI: 10.1111/jace.18575

    [23]

    Pee J H, Park J C, Hwang K T, et al. Properties of AlN powder synthesized by self-propagating high temperature synthesis process. Key Eng Mater, 2010, 434-435: 834 DOI: 10.4028/www.scientific.net/KEM.434-435.834

    [24]

    Kim K I, Choi S C, Kim J H, et al. Synthesis and characterization of high-purity aluminum nitride nanopowder by RF induction thermal plasma. Ceram Int, 2014, 40(6): 8117 DOI: 10.1016/j.ceramint.2014.01.006

    [25]

    Ognjanović S M, Winterer M. Optimizing particle characteristics of nanocrystalline aluminum nitride. Powder Technol, 2018, 326: 488 DOI: 10.1016/j.powtec.2017.12.009

    [26] 林健凉, 曲选辉, 黄栋生, 等. AlN陶瓷粉末制备方法特点和进展. 功能材料, 2001, 32(6): 576 DOI: 10.3321/j.issn:1001-9731.2001.06.005

    Lin J L, Qu X H, Huang D S, et al. Research development of synthesis methods of aluminum nitride powder. J Funct Mater, 2001, 32(6): 576 DOI: 10.3321/j.issn:1001-9731.2001.06.005

    [27] 秦明礼, 曲选辉, 林健凉, 等. 原料对碳热还原法合成氮化铝粉末的影响. 中南工业大学学报, 2002, 33(5): 505

    Qin M L, Qu X H, Lin J L, et al. Effect of starting materials on the synthesis of aluminum nitride powders by carbothermal reduction method. J Cent South Univ Technol, 2002, 33(5): 505

    [28] 燕东明, 高晓菊, 刘国玺, 等. 高热导率氮化铝陶瓷研究进展. 硅酸盐通报, 2011, 30(3): 602

    Yan D M, Gao X J, Liu G X, et al. Research progress of alumina nitride ceramics with high thermal conductivity. Bull Chin Ceram Soc, 2011, 30(3): 602

    [29]

    Lu H F, Qin M L, Wu H Y, et al. Effect of AlN powders on the debinding and sintering behavior, and thermal conductivity of injection molded AlN ceramics. Ceram Int, 2019, 45(18, Part A): 23890

    [30]

    He Q, Qin M L, Huang M, et al. Mechanism and kinetics of combustion-carbothermal synthesis of AlN nanopowders. Ceram Int, 2017, 43(12): 8755 DOI: 10.1016/j.ceramint.2017.04.006

    [31]

    Bermudo J, Osendi M I, Fierro J L G. Oxygen distribution in AlN and Si3N4 powders as revealed by chemical and spectroscopy techniques. Ceram Int, 2000, 26(2): 141 DOI: 10.1016/S0272-8842(99)00032-2

    [32]

    Kuramoto N, Taniguchi H, Numata Y, et al. Sintering process of translucent AlN and effect of impurities on thermal conductivity of AlN ceramics. Yogyo Kyokai Shi, 1985, 93(9): 517

    [33]

    Taniguchi H. Recent progress on AIN powder for high thermal conductive ceramics. Key Eng Mater, 1998, 159-160: 39 DOI: 10.4028/www.scientific.net/KEM.159-160.39

    [34]

    Watari K, Brito M E, Yasuoka M, et al. Influence of powder characteristics on sintering process and thermal conductivity of aluminum nitride ceramics. J Ceram Soc Jpn, 1995, 103(1201): 891 DOI: 10.2109/jcersj.103.891

    [35]

    Kuibira A, Okada H, Nakata H, et al. Influence of coarse particles on microstructure of aluminum nitride sintered body. Adv Powder Technol, 2009, 20(5): 464 DOI: 10.1016/j.apt.2009.03.010

    [36] 鲁慧峰. 氮化铝粉末制备及注射成形研究[学位论文]. 北京: 北京科技大学, 2019

    Lu H F. Study on Preparation and Injection Molding of Aluminum Nittride Powder [Dissertation]. Beijing; University of Science and Techology Beijing, 2019

    [37]

    Krnel K, Kosmac̆ T. Protection of AlN powder against hydrolysis using aluminum dihydrogen phosphate. J Eur Ceram Soc, 2001, 21(10): 2075

    [38]

    Kocjan A, Dakskobler A, Krnel K, et al. The course of the hydrolysis and the reaction kinetics of AlN powder in diluted aqueous suspensions. J Eur Ceram Soc, 2011, 31(5): 815 DOI: 10.1016/j.jeurceramsoc.2010.12.009

    [39] 陈越军, 卜景龙, 汪振龙, 等. 硅油包裹对AlN粉末抗水化性能的影响. 中国陶瓷, 2015, 51(3): 58

    Chen Y J, Bu J L, Wang Z L, et al. Effect of silicone oil coating on anti-hydrolytic of AlN powders. China Ceram, 2015, 51(3): 58

    [40] 郭坚, 丘泰, 杨建, 等. 抗水解AlN粉末的制备方法: 中国专利, CN101508573A. 2011-8-31

    Guo J, Qiu T, Yang J, et al. Preparation Method of Hydrolysis-Resistant AlN Powder: China Patent, CN101508573A. 2011-8-31

    [41]

    Tamagaki M, Kanechika Y. Method for Producing Water-Resistant Aluminum Nitride Powder: US Patent, 9399577B2. 2016-7-26

    [42] 鲁慧峰, 秦明礼, 何庆, 等. 表面处理对氮化铝粉末抗水化性能的影响. 真空电子技术, 2015(4): 36 DOI: 10.3969/j.issn.1002-8935.2015.04.010

    Lu H F, Qin M L, He Q, et al. Effect of surface treatment on the hydrolysis property of AlN powder. Vac Electron, 2015(4): 36 DOI: 10.3969/j.issn.1002-8935.2015.04.010

    [43]

    Wang S, Wang Y, Xie J J, et al. Composite NVP-IA/AlN powders with core–shell structure for anti-hydrolysis. Appl Phys A, 2022, 128(7): 603 DOI: 10.1007/s00339-022-05730-7

    [44] 秦明礼, 曲选辉, 林健凉, 等. 碳热还原法制备氮化铝陶瓷粉末的研究. 材料导报, 2001, 15(7): 56 DOI: 10.3321/j.issn:1005-023X.2001.07.020

    Qin M L, Qu X H, Lin J L, et al. Research on the synthesis of aluminum nitride ceramic powder by carbothermal reduction method. Mater Rev, 2001, 15(7): 56 DOI: 10.3321/j.issn:1005-023X.2001.07.020

    [45]

    Tsuge A, Inoue H, Kasori M, et al. Raw material effect on AIN powder synthesis from Al2O3 carbothermal reduction. J Mater Sci, 1990, 25(5): 2359 DOI: 10.1007/BF00638028

    [46] 匡加才, 张长瑞, 周新贵, 等. 不同铝源对碳热还原法合成氮化铝粉末的影响. 宇航材料工艺, 2003, 33(5): 44 DOI: 10.3969/j.issn.1007-2330.2003.05.010

    Kuang J C, Zhang C R, Zhou X G, et al. Effects of various aluminum sources on AlN powder prepared by carbon thermal reduction. Aerosp Mater Technol, 2003, 33(5): 44 DOI: 10.3969/j.issn.1007-2330.2003.05.010

    [47] 杜海清, 何国新, 张洁尧. 溶胶-凝胶法制备超细氮化铝粉末的研究. 科学通报, 1993, 38(1): 90 DOI: 10.3321/j.issn:0023-074X.1993.01.025

    Du H Q, He G F, Zhang J Y. Preparation of ultrafine aluminum nitride powder by sol-gel method. Chin Sci Bull, 1993, 38(1): 90 DOI: 10.3321/j.issn:0023-074X.1993.01.025

    [48]

    Chu A M, Qin M L, Rafi-ud-din, et al. Effect of aluminum source on the synthesis of AlN powders from combustion synthesis precursors. Mater Res Bull, 2012, 47(9): 2475 DOI: 10.1016/j.materresbull.2012.05.014

    [49]

    Hu J L, Huang Q Z, Peng H X, et al. Effect of reaction conditions on the synthesis of ultrafine AlN powder with glucose as carbon source. Ceram Silik, 2018, 62(3): 261

    [50]

    Qin M L, Du X L, Wang J, et al. Influence of carbon on the synthesis of AlN powder from combustion synthesis precursors. J Eur Ceram Soc, 2009, 29(4): 795 DOI: 10.1016/j.jeurceramsoc.2008.07.019

    [51]

    Komeya K, Mitsuhashi E, Meguro T. Synthesis of AlN powder by carbothermal reduction-nitridation method effect of additives on reaction rate. J Ceram Soc Jpn, 1993, 101(1172): 377 DOI: 10.2109/jcersj.101.377

    [52]

    Fu L, Qiao L, Zheng J W, et al. Phase, microstructure and sintering of aluminum nitride powder by the carbothermal reduction-nitridation process with Y2O3 addition. J Eur Ceram Soc, 2018, 38(4): 1170 DOI: 10.1016/j.jeurceramsoc.2017.10.029

    [53]

    Molisani A L, Yoshimura H N. Low-temperature synthesis of AlN powder with multicomponent additive systems by carbothermal reduction–nitridation method. Mater Res Bull, 2010, 45(6): 733 DOI: 10.1016/j.materresbull.2010.02.012

    [54]

    Ide T, Komeya K, Meguro T, et al. Synthesis of AlN powder by carbothermal reduction-nitridation of various Al2O3powders with CaF2. J Am Ceram Soc, 1999, 82(11): 2993 DOI: 10.1111/j.1151-2916.1999.tb02193.x

    [55]

    Kuang J C, Zhang C R, Zhou X G, et al. Formation and characterization of cubic AlN crystalline in a carbothermal reduction reaction. Mater Lett, 2005, 59(16): 2006 DOI: 10.1016/j.matlet.2005.02.039

    [56]

    Liu Z J, Wang W C, Yang D Z, et al. Synthesis of nano-size AlN powders by carbothermal reduction from plasma-assisted ball milling precursor. Plasma Sci Technol, 2016, 18(7): 759 DOI: 10.1088/1009-0630/18/7/10

    [57]

    Chu A M, Qin M L, Rafi-ud-din, et al. Citric acid-assisted combustion-carbothermal synthesis of well-distributed highly sinterable ALN nanopowders. J Am Ceram Soc, 2012, 95(8): 2510 DOI: 10.1111/j.1551-2916.2012.05225.x

    [58]

    Lee S H, Yi J H, Kim J H, et al. Preparation of nanometer AlN powders by combining spray pyrolysis with carbothermal reduction and nitridation. Ceram Int, 2011, 37(6): 1967 DOI: 10.1016/j.ceramint.2011.03.052

    [59] 戴长虹, 张显鹏, 张劲松, 等. 微波法合成AlN纳米微粉. 金属学报, 1996, 32(11): 1221

    Dai C H, Zhang X P, Zhang J S, et al. Synthesis of nanometer aluminium nitride powder by microwave method. Acta Metall Sin, 1996, 32(11): 1221

    [60] 肖劲, 陈燕彬, 周峰, 等. 煅烧方式和添加剂对碳热还原法制备氮化铝粉末的影响. 粉末冶金技术, 2008, 26(5): 332

    Xiao J, Chen Y B, Zhou F, et al. Effects of calcining methods and addictives on AlN powder prepared by carbothermal reduction. Powder Metall Technol, 2008, 26(5): 332

    [61]

    Chikami H, Fukushima J, Hayashi Y, et al. Kinetics of microwave synthesis of AlN by carbothermal-reduction-nitridation at low temperature. J Am Ceram Soc, 2018, 101(11): 4905 DOI: 10.1111/jace.15903

    [62] 高朋召, 刘小磐, 程磊, 等. 一种高纯度、类球形纳米氮化铝颗粒的制备方法: 中国专利, CN108862216B. 2021-09-17

    Gao P Z, Liu X P, Cheng L, et al. A Method for the Preparation of High-Purity, Sphere-Like Aluminum Nitride Nanoparticles: China Patent, CN108862216B. 2021-09-17

    [63]

    Zhou Z Q, Xu Y L, Chen X M, et al. Preparation of AlN under vacuum by the alumina carbothermal reduction nitridation method. Ceram Int, 2020, 46(4): 4095 DOI: 10.1016/j.ceramint.2019.10.011

    [64]

    Shan Y, Xu J, Sun X, et al. Preparation of AlN powder of low oxygen content via carbothermal reduction and nitridation by active gas exchange technique. Ceram Int, 2020, 46(13): 21182 DOI: 10.1016/j.ceramint.2020.05.196

    [65]

    Zhang Q H, Gao L. Synthesis of nanocrystalline aluminum nitride by nitridation of δ-Al2O3 nanoparticles in flowing ammonia. J Am Ceram Soc, 2006, 89(2): 415 DOI: 10.1111/j.1551-2916.2005.00715.x

    [66]

    He Q, Qin M L, Huang M, et al. Synthesis of highly sinterable AlN nanopowders through sol-gel route by reduction-nitridation in ammonia. Ceram Int, 2019, 45(12): 14568 DOI: 10.1016/j.ceramint.2019.04.174

    [67] 管军凯. 基于热解法制备氮化铝粉末的制备方法: 中国专利, CN109206140B. 2021-06-01

    Guan J K. Preparation Method of Aluminum Nitride Powder Based on Pyrolysis Method: China Patent, CN109206140B. 2021-06-01

    [68]

    Kiyoaki H, Moriji M, Shiro M. Aluminum Nitride Powder: JPN Patent, JPH0812307. 1996-01-16

    [69] 林伟毅, 刘卫平, 钟建智. 一种氮化铝粉体的制备方法: 中国专利, CN111847403A. 2020-10-30

    Lin W Y, Liu W P, Zhong J Z. A Method of Preparing Aluminum Nitride Powder: China Patent, CN111847403A. 2020-10-30

    [70] 孙红杰, 马耀斌, 彭建勋, 等. 氮化铝电子陶瓷粉末的制备方法: 中国专利, CN105836717B. 2018-03-16

    Sun H J, Ma Y B, Peng J X, et al. Preparation Method of Aluminum Nitride Electronic Ceramic Powder: China Patent, CN105836717B. 2018-03-16

    [71]

    Chowdhury S A, Maiti H S, Biswas S. Synthesis of spherical Al2O3 and AlN powder from C@Al2O3 composite powder. J Mater Sci, 2006, 41(15): 4699 DOI: 10.1007/s10853-006-0039-2

    [72] 管军凯, 鲁慧峰, 何庆, 等. 碳热还原法制备氮化铝粉体的除碳方法: 中国专利, CN113956051A. 2022-01-21

    Guan J K, Lu H F, He Q, et al. Carbon Control Method for the Preparation of Aluminum Nitride Powder by Carbothermal Reduction: China Patent, CN113956051A. 2022-01-21

    [73] 管军凯, 鲁慧峰, 何庆, 等. 低氧含量氮化铝粉体制备的方法: 中国专利, CN114031052A. 2022-02-11

    Guan J K, Lu H F, He Q, et al. Method for the Preparation of Aluminium Nitride Powders with Low Oxygen Content: China Patent, CN114031052A. 2022-02-11

  • 期刊类型引用(6)

    1. 胡媛,程传涛. 绘画手绘创作在纸质与颜料相互作用分析. 造纸科学与技术. 2024(02): 145-148 . 百度学术
    2. 孔歌,蔡小平,冯培忠. 废旧MoSi_2回收产物烧结制备Fe_2(MoO_4)_3的组织形貌和性能. 粉末冶金技术. 2024(03): 255-263 . 本站查看
    3. 郝素菊,田杨,刘政,蒋武锋,高一策,佟帅. 碳包覆棒状纳米氧化铁非等温还原动力学. 冶金能源. 2024(05): 54-59 . 百度学术
    4. 鲁琴瑶,张荣良,陆添爱,李聪,曾加,周琳凯,高妍妍. 水热法制备纳米氧化镁. 粉末冶金技术. 2023(04): 350-355 . 本站查看
    5. 苗国厚,李正茂. 铁掺杂微纳米生物活性玻璃促进牙本质矿化的实验研究. 当代化工研究. 2022(14): 27-29 . 百度学术
    6. 郝素菊,高一策,蒋武锋,孙天昊,张玉柱. 一种新型球状纳米氧化铁的制备. 材料研究学报. 2022(12): 887-892 . 百度学术

    其他类型引用(3)

图(11)  /  表(3)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 9
出版历程
  • 收稿日期:  2022-08-22
  • 录用日期:  2022-08-22
  • 网络出版日期:  2022-08-22
  • 刊出日期:  2024-06-27

目录

/

返回文章
返回