高级检索

激光增材制造多孔GH4169高温合金孔结构与性能研究

Pore structure and performance of porous GH4169 superalloys preparedby laser additive manufacturing

  • 摘要: 利用选区激光熔化技术制备出具有不同孔隙结构的多孔GH4169高温合金材料,对制备样品进行扫描电镜观察以及毛细曲线和压缩应力应变曲线测试,系统研究了孔结构对多孔材料毛细抽吸性能及压缩力学性能的影响。结果表明,随着激光功率从285 W减小到160 W,多孔高温合金样品总孔隙率从3.5%增加到46.1%;随着开孔率从15.6%增加到21.7%,多孔高温合金样品的毛细抽吸速度从4.44 mg/(s·cm3)增加到6.56 mg/(s·cm3),毛细抽吸质量从91.3 mg/cm3下降到81.7 mg/cm3,毛细抽吸质量的减少可能与样品孔径增大导致毛细力下降有关。孔隙率增加也导致多孔材料样品弹性模量从53 GPa减小到11 GPa,弹性极限从768 MPa减小到217 MPa,孔材料样品均展现出较好的抗压缩变形能力。

     

    Abstract: Porous GH4169 superalloy materials with the different pore structures were prepared by selective laser melting technology. The effects of pore structure on the capillary and compressive mechanical properties were investigated by scanning electron microscopy (SEM), capillary curves, and compressive stress strain curves. The results show that, the porosity of the porous superalloy specimens increases from 3.5% to 46.1% with decreasing the laser power from 285 W to 160 W. With the increase of porosity from 15.6% to 21.7%, the capillary pumping rate of the porous superalloy specimens increases from 4.44 to 6.56 mg/(s·cm3), and the capillary pumping mass decreases from 91.3 to 81.7 mg/cm3, due to the decrease of capillary force caused by the increased pore size of the porous materials. Increasing the porosity of the porous materials leads to the decrease of elastic modulus from 53 to 11 GPa and the decrease of elastic limit from 768 to 217 MPa. It also can be found that all of the porous superalloy specimens show the good resistance to the compression deformation.

     

/

返回文章
返回