AdvancedSearch
GONG Zheng-qi, WANG Can-ming, CUI Hong-zhi, ZHANG Wen-ya. Effect of graphene on the microstructure and properties of nickel-based tungsten carbide coatings by laser cladding[J]. Powder Metallurgy Technology, 2019, 37(5): 323-331. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.05.001
Citation: GONG Zheng-qi, WANG Can-ming, CUI Hong-zhi, ZHANG Wen-ya. Effect of graphene on the microstructure and properties of nickel-based tungsten carbide coatings by laser cladding[J]. Powder Metallurgy Technology, 2019, 37(5): 323-331. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.05.001

Effect of graphene on the microstructure and properties of nickel-based tungsten carbide coatings by laser cladding

More Information
  • Corresponding author:

    WANG Can-ming, E-mail: 515085166@qq.com

  • Received Date: September 13, 2018
  • Available Online: December 08, 2020
  • Ni60-30%WC-x% graphene(mass fraction, x=0.0, 0.1, 0.3, 0.5) coatings were fabricated by laser cladding on the Q235 steel substrates, and the effect of graphene on the microstructure and properties of nickel-based tungsten carbide coatings was investigated. The research shows that the phases of coating samples are mainly composed of Ni-Cr-Fe solid solution with γ phase structure, WC, W2C、Cr7C3、Cr23C6、B4C. The graphene improves the microstructures, microhardness, and wear resistance of the laser cladding nickel-based tungsten carbide coatings. Especially, when the graphene content is 0.3% by mass fraction, the coatings show the fine and uniforms microstructures, the higher hardness, and the excellent crack and wear resistance.
  • [1]
    Zhou S F, Dai X Q. Laser induction hybrid rapid cladding of WC particles reinforced NiCrBSi composite coatings. Appl Surf Sci, 2010, 256(14): 4708. DOI: 10.1016/j.apsusc.2010.02.078
    [2]
    Jiao X Y, Wang C M, Gong Z Q, et al. Effect of Ti on T15M composite coating fabricated by laser cladding technology. Surf Coat Technol, 2017, 325: 643. DOI: 10.1016/j.surfcoat.2017.07.008
    [3]
    Jiao X Y, Wang J, Wang C M, et al. Effect of laser scanning speed on microstructure and wear properties of T15M cladding coating fabricated by laser cladding technology. Opt Lasers Eng, 2018, 110: 163. DOI: 10.1016/j.optlaseng.2018.05.024
    [4]
    马超. 激光熔覆镍基复合涂层组织与性能研究[学位论文]. 大连: 大连理工大学, 2013

    Ma C. Microstructure and Properties of Ni-based Composite Coatings Prepared by Laser Cladding[Dissertation]. Dalian: Dalian University of Technology, 2013
    [5]
    李晓惠, 付宇明, 李伟, 等. 激光熔覆纳米WC颗粒增强型合金粉末的研究. 热加工工艺, 2011, 40(24): 171 DOI: 10.3969/j.issn.1001-3814.2011.24.055

    Li X H, Fu Y M, Li W, et al. Study on laser cladding on alloy powder reinforced with nano-WC particles. Hot Working Technol, 2011, 40(24): 171 DOI: 10.3969/j.issn.1001-3814.2011.24.055
    [6]
    张维平, 刘文艳. 激光熔敷陶瓷涂层综述. 表面技术, 2001, 30(4): 30 DOI: 10.3969/j.issn.1001-3660.2001.04.011

    Zhang W P, Liu W Y. Progress of laser cladding about ceramic coating. Surf Technol, 2001, 30(4): 30 DOI: 10.3969/j.issn.1001-3660.2001.04.011
    [7]
    独涛, 张洪迪, 范同祥. 石墨烯/金属复合材料的研究进展. 材料导报A, 2015, 29(2): 121

    Du T, Zhang H D, Fan T X. Recent progress on graphene/metal composites. Mater Rev A, 2015, 29(2): 121
    [8]
    杜金芳. 石墨烯/镍基复合材料的原位制备与性能研究[学位论文], 兰州: 兰州理工大学, 2017

    Du J F. In-situ Fabrication and Properties of Graphene/Nickel Matrix Composites [Dissertation]. Lanzhou: Lanzhou University of Technology, 2017
    [9]
    马瑜, 丁古巧. 石墨烯金属基复合材料研究进展. 电子元件与材料, 2017, 36(9): 75

    Ma Y, Ding G Q. Research progress in graphene reinforced metal matrix composites. Electron Compon Mater, 2017, 36(9): 75
    [10]
    吉传波, 王晓峰, 邹金文, 等. 石墨烯增强镍基粉末高温合金复合材料的力学性能. 材料工程, 2017, 45(3): 1 DOI: 10.3969/j.issn.1673-1433.2017.03.001

    Ji C B, Wang X F, Zou J W, et al. Mechanical properties of graphene reinforced nickel-based P/M superalloy. J Mater Eng, 2017, 45(3): 1 DOI: 10.3969/j.issn.1673-1433.2017.03.001
    [11]
    李龙, 周德敬. 石墨烯增强铝合金复合材料的研究进展. 金属世界, 2017(4): 5 DOI: 10.3969/j.issn.1000-6826.2017.04.02

    Li L, Zhou D J. Progress on graphene reinforced aluminum-based composite materials. Met World, 2017(4): 5 DOI: 10.3969/j.issn.1000-6826.2017.04.02
    [12]
    Walker L S, Marotto V R, Rafiee M A, et al. Toughening in graphene ceramic composites. ACS Nano, 2011, 5(4): 3182. DOI: 10.1021/nn200319d
    [13]
    燕绍九, 杨程, 洪起虎, 等. 石墨烯增强铝基纳米复合材料的研究. 材料工程, 2014(4): 1

    Yan S J, Yang C, Hong Q H, et al. Research of graphene-reinforced aluminum matrix nanocomposites. J Mater Eng, 2014(4): 1
    [14]
    魏邦争, 陈闻超, 朱曦, 等. 石墨烯化学镀铜及其对石墨烯/铜基复合材料组织性能的影响. 粉末冶金技术, 2018, 36(5): 363 DOI: 10.19591/j.cnki.cn11-1974/tf.2018.05.008

    Wei B Z, Chen W C, Zhu X, et al. Study of electroless plating Cu by reduced graphene oxide and the effects on the microstructures and properties of RGO/Cu composites. Powder Metall Technol, 2018, 36(5): 363 DOI: 10.19591/j.cnki.cn11-1974/tf.2018.05.008
    [15]
    杨斌, 杜更新, 程福来, 等. 半固态烧结制备石墨烯/7075铝基复合材料与性能研究. 粉末冶金技术, 2018, 36(4): 304 DOI: 10.19591/j.cnki.cn11-1974/tf.2018.04.011

    Yang B, Du G X, Cheng F L, et al. Preparation and mechanical properties of graphene reinforced-Al7075composite by semi-solid sintering. Powder Metall Technol, 2018, 36(4): 304 DOI: 10.19591/j.cnki.cn11-1974/tf.2018.04.011
    [16]
    徐建新, 姚雨, 姜鑫. 石墨烯增强铁基复合材料制备工艺及其性能的研究. 机械制造与自动化, 2018, 47(4): 53

    Xu J X, Yao Y, Jiang X. Research on preparation process and performance of graphene reinforced iron matrix composites. Mach Build Autom, 2018, 47(4): 53
    [17]
    麻伍军. 石墨烯杂化纤维及其柔性超级电容器研究[学位论文], 上海: 东华大学, 2016

    Ma W J. Graphene Hybrid Fibers for Flexible Supercapacitors[Dissertation]. Shanghai: Donghua University, 2016
    [18]
    李强, 雷廷权, 张永忠, 等. 激光熔覆(WC+W2C)p/Ni基合金复合涂层的微观结构特征. 材料科学与工艺, 2002, 10(1): 5 DOI: 10.3969/j.issn.1005-0299.2002.01.002

    Li Q, Lei T Q, Zhang Y Z, et al. Microstructure of laser clad(WC+W2C)p/Ni based alloy composite coatings. Mater Sci Technol, 2002, 10(1): 5 DOI: 10.3969/j.issn.1005-0299.2002.01.002
    [19]
    凌自成, 闫翠霞, 史庆南, 等. 石墨烯增强金属基复合材料的制备方法研究进展. 材料导报A, 2015, 29(4): 143

    Ling Z C, Yan C X, Shi Q N, et al. Recent progress in preparation methods for metal matrix composite materials reinforced with graphene nanosheets. Mater Rev A, 2015, 29(4): 143
    [20]
    蒲瑾. 石墨烯‒铜复合材料研究新进展. 科技创新与应用, 2015, 22: 86

    Pu J. New progress in research of graphene‒copper composites. Technol Innov Appl, 2015, 22: 86
    [21]
    Fernández M R, García A, Cuetos J M, et al. Effect of actual WC content on the reciprocating wear of a laser cladding NiCrBSi alloy reinforced with WC. Wear, 2015, 324-325: 80. DOI: 10.1016/j.wear.2014.12.021
    [22]
    Li J F, Zhang L, Xiao J K, et al. Sliding wear behavior of copper-based composites reinforced with graphene nanosheets and graphite. Trans Nonferrous Met Soc China, 2015, 25: 3354. DOI: 10.1016/S1003-6326(15)63970-X
  • Related Articles

    [1]ZHANG Wei, SHANG Xianhe, HU Minglei, SUI Fei, HE Xing, ZHOU Liangdong, NI Xiaoqing, ZHANG Liang, KONG Decheng, DONG Chaofang. Effect of laser power on microstructure and wear resistance of laser cladding Stellite 6 alloy coatings[J]. Powder Metallurgy Technology, 2025, 43(2): 170-179. DOI: 10.19591/j.cnki.cn11-1974/tf.2023080003
    [2]ZHU Yebiao, CHEN Zhidong, GUO Wuming, BAO Chongxi. Effect of diamond-like carbon self-lubricant coatings on wear resistance of powder metallurgy products[J]. Powder Metallurgy Technology, 2024, 42(5): 503-509. DOI: 10.19591/j.cnki.cn11-1974/tf.2024050005
    [3]XU Hongyang, LU Jinbin, PENG Xuan, MA Mingxing, MENG Wenlu, LI Hongzhe. Microstructure and phase stability analysis of laser cladding CoCrCu0.4FeNi high entropy alloy coatings[J]. Powder Metallurgy Technology, 2024, 42(3): 320-330. DOI: 10.19591/j.cnki.cn11-1974/tf.2022020003
    [4]Anisotropy in Microstructure and Wear Performance of CoCrMo Alloy Melted by Laser Selective Melting[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2024080010
    [5]ZHANG Qing-yu, YUAN Tao. Study on microstructures and high temperature oxidation resistance of Ti-based NiAlSi alloy by laser cladding[J]. Powder Metallurgy Technology, 2018, 36(5): 331-334, 354. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.05.002
    [6]Fan Tao, Liu Bowen, Sun Yanrong, Wang Hu, Tang weizhong, Jia Chengchang. Study on Wear Resistance of Al2O3 Particle Reinforced Al Matrix Composites[J]. Powder Metallurgy Technology, 2015, 33(3): 186-189. DOI: 10.3969/j.issn.1001-3784.2015.03.006
    [7]Influence of alloy elements Ni、Mo、W and copper infiltrated on wear resistance of sintered steels[J]. Powder Metallurgy Technology, 2003, 21(4): 213-217. DOI: 10.3321/j.issn:1001-3784.2003.04.005
    [8]Shen Dejiu, Wang Yulin, Fang Chunlin. Study on Wear Resistance of WC Enhanced Ni-based Speay Melt Layer[J]. Powder Metallurgy Technology, 1997, 15(4): 286-288.
    [9]Song Huan, Zhang Song, Zhang Shusheng, Sui Quanming. STUDY ON FLAME SPRAY WELDING BY USING CAST TUNGSTEN CARBIDE ALLOY POWDER PREFORMED COMPACT AND WEAR RESISTANCE[J]. Powder Metallurgy Technology, 1995, 13(4): 259-264.
    [10]Zhou Xisheng. EFFECT OF ALLOYING ELEMENTS ON WEAR RESISTANCE OF SINTERED IRON BASE MATERIALS[J]. Powder Metallurgy Technology, 1992, 10(4): 292-294.
  • Cited by

    Periodical cited type(7)

    1. 杨璐,齐博,杨宏旭,王天韵. 单层MoS_2力学性能的有限元分析. 沈阳工业大学学报. 2023(03): 348-353 .
    2. 黄伟江,田阿青,涂春云,田琴,李督清,王奎,许晓璐,杨洁,严伟. 植酸铵包覆改性二硫化钼的制备及结构分析. 塑料工业. 2023(06): 30-37 .
    3. 白锐,白昱,刘益,芦哲义,廖小雪. 二硫化钼/天然橡胶复合材料的制备及力学性能. 广东化工. 2022(05): 4-6 .
    4. 司华艳,刘彩红. 1T/2H-二硫化钼的制备及其电析氢性能研究. 石家庄学院学报. 2022(03): 40-45 .
    5. 赵大洲,孙睿妤,冯莫南,王雪莹,樊思婕,艾珍珍. 节能降碳——二维MoS_2的设计和对CO_2电催化还原性能研究. 江西化工. 2022(05): 7-10 .
    6. 赵子楠,武金涛,梁智健,朱亚彬,刘歌,陈云琳. 溅射羽辉与基底夹角对掺氧二硫化钼薄膜光学性质的影响. 人工晶体学报. 2022(11): 1871-1877 .
    7. 柏祖志,郭勇,刘聪聪. 二维过渡金属硫化物热电材料的研究进展. 江西科技师范大学学报. 2021(06): 6-11 .

    Other cited types(13)

Catalog

    Article Metrics

    Article views (442) PDF downloads (27) Cited by(20)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return