AdvancedSearch
ZHANG Lu-dong, LIU Jun, LUO Xiao-long, ZHANG Chao, LIN Li, ZHOU Chun, WANG Hai-lu. High velocity compaction simulation and dynamic mechanical analysis of particles based on discrete element method[J]. Powder Metallurgy Technology, 2020, 38(5): 350-356, 362. DOI: 10.19591/j.cnki.cn11-1974/tf.2019040013
Citation: ZHANG Lu-dong, LIU Jun, LUO Xiao-long, ZHANG Chao, LIN Li, ZHOU Chun, WANG Hai-lu. High velocity compaction simulation and dynamic mechanical analysis of particles based on discrete element method[J]. Powder Metallurgy Technology, 2020, 38(5): 350-356, 362. DOI: 10.19591/j.cnki.cn11-1974/tf.2019040013

High velocity compaction simulation and dynamic mechanical analysis of particles based on discrete element method

More Information
  • Corresponding author:

    LIU Jun, E-mail: liujun@nbu.edu.cn

  • Received Date: April 21, 2019
  • Three-dimensional discrete element method (DEM) was applied to simulate the dynamic response of aluminum powders under the high velocity compaction (HVC), and the results were compared with the experimental data. In the results, the numerical simulation is basically the same as the experiment results. The powder disturbance shows the irregular arc distribution during the high velocity compaction. There will be an uneven phenomenon of overall force in the initial stage of compaction; as the compaction keeps going, the uneven problem will be improved, and the powders exhibit the strong self-organization. In the single-pass loading process, the particle impact will occur repeatedly; in the densification stage, the upper particles will deform and rearrange, and the middle and lower layers will be dominated by the granular rearrangement; in the deformation stage, the force of all the particles is basically the same.
  • [1]
    闫志巧, 蔡一湘, 陈峰. 粉末冶金高速压制技术及其应用. 粉末冶金技术, 2009, 27(6): 455 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ200906012.htm

    Yan Z Q, Cai Y X, Chen F. High velocity compaction in powder forming and the promising applications. Powder Metall Technol, 2009, 27(6): 455 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ200906012.htm
    [2]
    迟悦, 果世驹, 孟飞, 等. 粉末冶金高速压制成形技术. 粉末冶金工业, 2005, 15(6): 41 DOI: 10.3969/j.issn.1006-6543.2005.06.009

    Chi Y, Guo S J, Meng F, et al. High velocity compaction in powder metallurgy. Powder Metall Ind, 2005, 15(6): 41 DOI: 10.3969/j.issn.1006-6543.2005.06.009
    [3]
    Chelluri B, Knoth E. Powder forming using dynamic magnetic compaction // 4th International Conference on High Speed Forming. Columbus, 2010: 26
    [4]
    Skoglund P. HVC punches PM to new mass production limits. MPR, 2002, 57(9): 26 http://www.researchgate.net/publication/285009917_HVC_punches_PM_to_new_mass_production_limits
    [5]
    金磊, 曾亚武, 李欢, 等. 基于不规则颗粒离散元的土石混合体大三轴数值模拟. 岩土工程学报, 2015, 37(5): 829 https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201505010.htm

    Jin L, Zeng Y W, Li H, et al. Numerical simulation of large-scale triaxial tests on soil-rock mixture based on DEM of irregularly shaped particles. Chin J Geotech Eng, 2015, 37(5): 829 https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201505010.htm
    [6]
    邓益兵, 杨彦骋, 史旦达, 等. 三维离散元大尺度模拟中变粒径方法的优化及其应用. 岩土工程学报, 2017, 39(1): 62 https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201701005.htm

    Deng Y B, Yang Y C, Shi D D, et al. Refinement and application of variable particle-size methods in 3D discrete element modelling for large-scale problems. Chin J Geotech Eng, 2017, 39(1): 62 https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201701005.htm
    [7]
    张超, 刘军, 罗晓龙, 等. 基于离散元法的金属粉末压制加载速度对压力分布影响. 粉末冶金技术, 2019, 37(2): 98 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201902003.htm

    Zhang C, Liu J, Luo X L, et al. Effect of loading speed on pressure distribution in metal powder pressing based on discrete element method. Powder Metall Technol, 2019, 37(2): 98 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201902003.htm
    [8]
    Jerier J F, Hathong B, Richefeu V, et al. Study of cold powder compaction by using the discrete element method. Powder Technol, 2011, 208(2): 537 DOI: 10.1016/j.powtec.2010.08.056
    [9]
    Martin C L, Bouvard D. Study of the cold compaction of composite powders by the discrete element method. Acta Mater, 2003, 51(2): 373 DOI: 10.1016/S1359-6454(02)00402-0
    [10]
    Martin C L, Bouvard D, Shima S. Study of particle rearrangement during powder compaction by the discrete element method. J Mech Phys Solids, 2003, 51(4): 667 DOI: 10.1016/S0022-5096(02)00101-1
    [11]
    杨霞, 果世驹. 粉末压制致密化过程的离散元模拟// 中国粉末冶金新技术及南荣金属粉末冶金会议文集. 广州, 2008: 165

    Yang X, Guo S J. Discrete element simulation of powder compaction process // China Powder Metallurgy New Technology and Nanrong Metal Powder Metallurgy Conference. Guangzhou, 2008: 165
    [12]
    郑洲顺, 徐丹, 雷湘媛, 等. 粉末高速压制成形密度分布的数值模拟及影响因素分析. 材料工程, 2012(7): 10 DOI: 10.3969/j.issn.1001-4381.2012.07.003

    Zheng Z S, Xu D, Lei X Y, et al. Numerical simulation and influential factors analysis of density distribution in high velocity compaction. J Mater Eng, 2012(7): 10 DOI: 10.3969/j.issn.1001-4381.2012.07.003
    [13]
    郑洲顺, 王爽, 郑珊, 等. 基于离散单元法的粉末高速压制流动过程模拟. 稀有金属材料与工程, 2010, 39(12): 2132 https://www.cnki.com.cn/Article/CJFDTOTAL-COSE201012014.htm

    Zheng Z S, Wang S, Zheng S, et al. Numerical simulation of particle flow for high velocity compaction based on discrete element method. Rare Met Mater Eng, 2010, 39(12): 2132 https://www.cnki.com.cn/Article/CJFDTOTAL-COSE201012014.htm
    [14]
    王爽, 郑洲顺, 周文. 粉末高速压制成形过程中的应力波分析. 物理学报, 2011, 60(12): 590 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201112085.htm

    Wang S, Zheng Z S, Zhou W. The pressure wave analysis in high velocity compaction process. Acta Phys Sin, 2011, 60(12): 590 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201112085.htm
    [15]
    胡仙平, 刘军, 马斌斌. 基于DEM的金属颗粒间接触力的影响因素. 机械设计与研究, 2015, 31(5): 101 https://www.cnki.com.cn/Article/CJFDTOTAL-JSYY201505032.htm

    Hu X P, Liu J, Ma B B. Research on the influential factors of contact force between metal particles based on the discrete element method. Mach Des Res, 2015, 31(5): 101 https://www.cnki.com.cn/Article/CJFDTOTAL-JSYY201505032.htm
    [16]
    易明军, 尹海清, 曲选辉, 等. 力与应力波对高速压制压坯质量的影响. 粉末冶金技术, 2009, 27(3): 207 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ200903011.htm

    Yi M J, Yin H Q, Qu X H, et al. Influence of force and stress wave on the quality of green compacts in high velocity compaction. Powder Metall Technol, 2009, 27(3): 207 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ200903011.htm
    [17]
    Cundall P A, Strack O D L. A discrete numerical model for granular assemblies. Géotechnique, 1979, 29(1): 47 DOI: 10.1680/geot.1979.29.1.47
    [18]
    孙其诚, 王光谦. 颗粒流动力学及其离散模型评述. 力学进展, 2008, 38(1): 87 DOI: 10.3321/j.issn:1000-0992.2008.01.006

    Sun Q C, Wang G Q. Review on granular flow dynamics and its discrete element method. Adv Mech, 2008, 38(1): 87 DOI: 10.3321/j.issn:1000-0992.2008.01.006
    [19]
    程远方, 果世驹, 赖和怡. 球形颗粒随机排列过程的计算机模拟. 北京科技大大学学报, 1999, 21(4): 387 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD199904019.htm

    Cheng Y F, Guo S J, Lai H Y. Computer simulation of random packing of spherical particles. J Univ Sic Technol Beijing, 1999, 21(4): 387 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD199904019.htm
    [20]
    罗晓龙, 刘军, 田始军, 等. 基于离散单元法的铝粉冲击加载过程三维数值模拟. 中国机械工程, 2018, 29(20): 2515 DOI: 10.3969/j.issn.1004-132X.2018.20.019

    Luo X L, Liu J, Tian S J, et al. 3D Numerical simulation of aluminum powders under impact loading based on discrete element method. China Mech Eng, 2018, 29(20): 2515 DOI: 10.3969/j.issn.1004-132X.2018.20.019
  • Related Articles

    [1]Effect of solution treatment on the microstructure and properties of UNS S32750 super duplex stainless steel prepared by selective laser melting[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2024110001
    [2]OUYANG Wei, ZHAI Bo, CHEN Wenlin, SONG Kuijing, CHEN Chang, ZHONG Zhihong. Microstructure and mechanical properties of FeCrCoMnNi matrix composites reinforced by TiC particles[J]. Powder Metallurgy Technology, 2024, 42(4): 338-345. DOI: 10.19591/j.cnki.cn11-1974/tf.2022100010
    [3]HE Longjun, ZHANG Mina, YE Xuyang, RUAN Dianbo, ZHANG Wenwu. CoCrMoNbTi refractory high-entropy alloys prepared by mechanical alloying combined with laser cladding[J]. Powder Metallurgy Technology, 2023, 41(6): 500-507. DOI: 10.19591/j.cnki.cn11-1974/tf.2021080011
    [4]PENG Shi-qing, GE Chang-chun, TIAN Tian, HAO Zhi-bo, ZHAO Bo. Effect of long term ageing on γ' phase in spray formed FGH100L superalloy settled by different solution treatment[J]. Powder Metallurgy Technology, 2021, 39(6): 483-489. DOI: 10.19591/j.cnki.cn11-1974/tf.2020100017
    [5]LIU Chang, CHEN Jia-nan, DING Wang-wang, YANG Jun-jun, CHEN Gang, QU Xuan-hui. Preparation and properties of quasi-spherical WMoTaTi refractory high entropy alloy powders[J]. Powder Metallurgy Technology, 2021, 39(5): 403-409. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030028
    [6]LI Lei, DONG Gui-xia, LI Zong-feng, KANG Jing-rui. Effects of solid phase reaction conditions on electrochemical performance of lithium iron phosphate[J]. Powder Metallurgy Technology, 2019, 37(5): 332-338. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.05.002
    [7]YUAN Lin-lin, HAN Peng, CHEN Xiao-yu, HUANG Xiao-meng. Study on microstructures and properties of high boron aluminum alloy prepared by powder metallurgy combined with hot rolling[J]. Powder Metallurgy Technology, 2018, 36(4): 249-255. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.04.002
    [8]QI Mei-huan, REN Shu-bin, ZHANG Gong-zhen, QI Jin-kun, QU Xuan-hui. Effects of solution treatment on microstructure and mechanical properties of hot isostatic pressing SAF3207[J]. Powder Metallurgy Technology, 2017, 35(5): 328-334. DOI: 10.19591/j.cnki.cn11-1974/tf.2017.05.002
    [9]Xie Jun, Tian Sugui, Zhou Xiaoming, Li Bosong. Influence of solution temperature on microstructure and creep behaviors of powder nickel-based superalloy[J]. Powder Metallurgy Technology, 2011, 29(4): 263-268.
    [10]Zhou Yuesheng, Yao Dechao, Zhang Huaiquan. Study on Manufacturing Process of(W,Ti)(C,N) Solid Solution[J]. Powder Metallurgy Technology, 1997, 15(2): 117-121.

Catalog

    Article Metrics

    Article views (574) PDF downloads (34) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return