AdvancedSearch
Effect of solution treatment on the microstructure and properties of UNS S32750 super duplex stainless steel prepared by selective laser melting[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2024110001
Citation: Effect of solution treatment on the microstructure and properties of UNS S32750 super duplex stainless steel prepared by selective laser melting[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2024110001

Effect of solution treatment on the microstructure and properties of UNS S32750 super duplex stainless steel prepared by selective laser melting

More Information
  • Available Online: January 22, 2025
  • A ferritic stainless steel with ultra-high strength and maintaining certain ductility was successfully prepared by selective laser melting, using UNS S32750 duplex stainless steel spherical powder with a particle size of 15-53 μm prepared by electrode induction-melting gas atomization. The microstructure, mechanical properties, and corrosion resistance of the duplex stainless steels before and after solution treatment were studied. The results indicate that, the microhardness, tensile strength, yield strength, elongation, and impact absorption energy of the as printed samples are 449 HV, 1475 MPa, 1265 MPa, 11.6% and 25.99 J, respectively. After solution treatment at 1150℃, the areas of α phase and γ phase are 55.2% and 44.8% respectively, with a ratio of approximately 1:1. The microhardness, tensile strength, yield strength, elongation, and impact absorption energy are 329 HV, 913 MPa, 601 MPa, 34% and 231.82 J, respectively. The strength and microhardness of stainless steel decreased, while its plasticity and toughness were enhanced. The self corrosion potential and pitting potential are higher than those of the printed sample, but the self corrosion current density is lower than that of the printed sample.
  • Related Articles

    [1]HE Xuemin, WANG Guishan, LI Yinghong, SHI Meijuan. Pitting corrosion behavior of pure copper components in EHV/UHV DC transmission environment[J]. Powder Metallurgy Technology, 2024, 42(1): 91-96. DOI: 10.19591/j.cnki.cn11-1974/tf.2020110003
    [2]Study on microstructure and high-temperature corrosion resistance to melt-salts of LDED High-Cr Ni-base alloy with low melting point[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2024100012
    [3]NI Xiaoqing, ZHANG Liang, WU Wenheng, KONG Decheng, WEN Ying, WANG Li, DONG Chaofang. Effect of electrochemical polishing on surface quality and corrosion resistance of Ti6Al4V crowns fabricated by selective laser melting[J]. Powder Metallurgy Technology, 2023, 41(6): 528-535, 542. DOI: 10.19591/j.cnki.cn11-1974/tf.2021110011
    [4]GUO Yang, HU Li-ming. Effect of graphene oxide on the corrosion resistance and electromagnetic propertiese of FeSiAl alloy powders[J]. Powder Metallurgy Technology, 2021, 39(6): 520-525. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030029
    [5]MIAO Zhen-wang, ZHU Fu-wen, LIU Qi. Study on microstructure and corrosion resistance of CoCrFeNiCuTix high-entropy alloy[J]. Powder Metallurgy Technology, 2020, 38(1): 10-17. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.01.002
    [6]Corrosion Resistance of Ti(C,N)-based Cermet for Surgical Cutting Tools[J]. Powder Metallurgy Technology, 2002, 20(2): 82-85. DOI: 10.3321/j.issn:1001-3784.2002.02.005
    [7]Ye Minghui, Zhao Zhongmin, Du Xinkang, Xin Wentong, Wang Jianjiang. INVESTIGATION ON CORROSION-RESISTANCE OF DOUBLE LINED CERAMIC COMPOSITE PIPES PRODUCED BY GRAVITATIONAL SEPARATION SHS PROCESS[J]. Powder Metallurgy Technology, 2000, 18(2): 106-110.
    [8]Duan Huiping, Wei Yanping, Yin Sheng, Lai Heyi. Investigation on corosion resistance of alloy produced by SHS centrifugal process[J]. Powder Metallurgy Technology, 1998, 16(3): 178-182.
    [9]Huang Jianzhong, Huang Boyun, Lu: Haibo. CHARACTERISTICS AND CORROSION RESISTANT PROPERTY OF HIGH TUNGSTEN HEAVY ALLOY SINTERED AT LOW TEMPERATURE[J]. Powder Metallurgy Technology, 1996, 14(1): 37-43.
    [10]Song Huan, Zhang Song, Zhang Shusheng, Sui Quanming. STUDY ON FLAME SPRAY WELDING BY USING CAST TUNGSTEN CARBIDE ALLOY POWDER PREFORMED COMPACT AND WEAR RESISTANCE[J]. Powder Metallurgy Technology, 1995, 13(4): 259-264.
  • Cited by

    Periodical cited type(1)

    1. 刘杰,李正刚,杨兵. AlCrNbSiTi高熵合金涂层高温水蒸气腐蚀研究. 湖南电力. 2024(02): 29-34 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (30) PDF downloads (4) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return