AdvancedSearch
FU Qian-qian, TONG Yan-peng. Study on particle characteristics and microstructure of La2Ce2O7 coating by atmospheric plasma spraying based on the response surface method[J]. Powder Metallurgy Technology, 2020, 38(5): 332-339. DOI: 10.19591/j.cnki.cn11-1974/tf.2019050006
Citation: FU Qian-qian, TONG Yan-peng. Study on particle characteristics and microstructure of La2Ce2O7 coating by atmospheric plasma spraying based on the response surface method[J]. Powder Metallurgy Technology, 2020, 38(5): 332-339. DOI: 10.19591/j.cnki.cn11-1974/tf.2019050006

Study on particle characteristics and microstructure of La2Ce2O7 coating by atmospheric plasma spraying based on the response surface method

More Information
  • Based on the Box-Behnken response surface method, the regression experiments for the three factors of atmospheric plasma spraying (arc current, argon flow rate, and hydrogen flow rate) were designed by Design Expert software. The velocity and temperature of La2Ce2O7 particles were monitored by SprayWatch-2i on-line diagnosis system. By the statistic analysis, the regression models of particle temperature and velocity were established. Scanning electron microscope (SEM) was used to characterize the coating microstructure. The area fraction of non-molten particles and porosity were calculated by Image-Pro-Plus software. The results show that, the La2Ce2O7 particle velocity is well fitted by the linearity regression model. The current and argon flow rate are the main parameters influencing the particle velocity. The particle velocity increases linearly with the increase of argon flow rate and current. The maximum velocity of particles can be obtained at the argon flow rate of 120 L·min-1, the current of 600 A, and the hydrogen flow rate of 10 L·min-1. However, the particle temperature conforms to the quadratic regression model, which is strongly influenced by the argon flow rate, the current, and the interaction between the current and argon flow rate. The maximum velocity of particles can be reached at the argon flow rate of 74.22 L·min-1, the current of 543.96 A, and the hydrogen flow rate of 10 L·min-1. The melting state of the particles increases and the non-molten particles decrease in the La2Ce2O7 coating.
  • [1]
    Padture N P, Gell M, Jordan E H. Thermal barrier coatings for gas-turbine engine applications. Science, 2002, 296(5566): 280 DOI: 10.1126/science.1068609
    [2]
    吕艳红, 张启富. 新型热障涂层研究现状及发展趋势. 粉末冶金工业, 2015, 25(1): 8 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201501003.htm

    Lü Y H, Zhang Q F. Current research status and development trend of advanced thermal barrier coatings. Powder Metall Ind. 2015, 25(1): 8 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201501003.htm
    [3]
    纪箴, 王聪瑜, 夏洋, 等. 氧化钇稳定氧化锆耐刻蚀涂层的研究现状. 粉末冶金技术, 2015, 33(6): 460 DOI: 10.3969/j.issn.1001-3784.2015.06.011

    Ji Z, Wang C Y, Xia Y, et al. The research of YSZ ceramic coating's preparation techniques on the surface of etching machine process chamber. Powder Metall Technol, 2015, 33(6): 460 DOI: 10.3969/j.issn.1001-3784.2015.06.011
    [4]
    Zhou C G, Wang N, Wang Z B, et al. Thermal cycling life and thermal diffusivity of a plasma-sprayed nanostructured thermal barrier coating. Scr Mater, 2004, 51(10): 945 DOI: 10.1016/j.scriptamat.2004.07.024
    [5]
    何明涛, 孟惠民, 王宇超, 等. 新型热障涂层材料及其制备技术的研究与发展. 粉末冶金技术, 2019, 37(1): 62 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201901014.htm

    He M T, Meng H M, Wang Y C, et al. Research and development of advanced thermal barrier coating materials and preparation technology. Powder Metall Technol, 2019, 37(1): 62 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201901014.htm
    [6]
    Rangaraj S, Kokini K. Fracture in single-layer zirconia (YSZ)-bond coat alloy (NiCoCrAlY) composite coatings under thermal shock. Acta Mater, 2004, 52(2): 455 DOI: 10.1016/j.actamat.2003.09.029
    [7]
    Cao X Q, Vassen R, Stoever D. Ceramic materials for thermal barrier coatings. J Eur Ceram Soc, 2004, 24(1): 1 DOI: 10.1016/S0955-2219(03)00129-8
    [8]
    Wang Y, Guo H B, Gong S K. Thermal shock resistance and mechanical properties of La2Ce2O7 thermal barrier coatings with segmented structure. Ceram Int, 2009, 35(7): 2639 DOI: 10.1016/j.ceramint.2009.02.025
    [9]
    Ma W, Gong S K, Li H F, et al. Novel thermal barrier coatings based on La2Ce2O7/8YSZ double-ceramic-layer systems deposited by electron beam physical vapor deposition. Surf Coat Technol, 2008, 202(12): 2704 DOI: 10.1016/j.surfcoat.2007.09.047
    [10]
    Dong H Y, Wang D X, Pei Y L, et al. Optimization and thermal cycling behavior of La2Ce2O7 thermal barrier coatings. Ceram Int, 2013, 39(2): 1863 DOI: 10.1016/j.ceramint.2012.08.034
    [11]
    Srinivasan V, Friis M, Vaidya A, et al. Particle injection in direct current air plasma spray: salient observations and optimization strategies. Plasma Chem Plasma Process, 2007, 27(5): 609 DOI: 10.1007/s11090-007-9089-8
    [12]
    Guessasma S, Montavon G, Coddet C. Velocity and temperature distributions of alumina–titania in-flight particles in the atmospheric plasma spray process. Surf Coat Technol, 2005, 192(1): 70 DOI: 10.1016/j.surfcoat.2004.03.020
    [13]
    Friis M, Persson C, Nylén P, et al. Investigation of particle in-flight characteristics during atmospheric plasma spraying of yttria-stabilized ZrO2: Part 1. Experimental. J Therm Spray Technol, 2001, 10(2): 301 DOI: 10.1361/105996301770349394
    [14]
    毛杰, 邓春明, 邓畅光, 等. 响应曲面法在大气等离子喷涂工艺研究中的应用. 表面技术, 2013, 42(4): 65 https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS201304017.htm

    Mao J, Deng C M, Deng C G, et al. Application of response surface methodology to the process study of atmospheric plasma spraying. Surf Technol, 2013, 42(4): 65 https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS201304017.htm
    [15]
    Box G E P, Behnken D W. Some new three level designs for the study of quantitative variables. Technometrics, 1960, 2(4): 455 DOI: 10.1080/00401706.1960.10489912
    [16]
    Cao X Q, Vassen R, Schwartz S, et al. Spray-drying of ceramics for plasma-spray coating. J Eur Ceram Soc, 2000, 20(14): 2433 http://www.sciencedirect.com/science/article/pii/S0955221900001126
    [17]
    Xiong H B, Zheng L L, Li L, et al. Melting and oxidation behavior of in-flight particles in plasma spray process. Int J Heat Mass Transfer, 2005, 48(25-26): 5121 DOI: 10.1016/j.ijheatmasstransfer.2005.07.019
    [18]
    Wang L S, Zhang S L, Liu T, et al. Dominant effect of particle size on the CeO2 preferential evaporation during plasma spraying of La2Ce2O7. J Eur Ceram Soc, 2017, 37(4): 1577 DOI: 10.1016/j.jeurceramsoc.2016.11.020
  • Related Articles

    [1]Research on the preparation process of silicide coating on molybdenum alloy surface by molten salt method[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2024070007
    [2]LIN Bingtao, ZHANG Baohong, TANG Liangliang, XIONG Ning, ZHANG Danhua, ZHANG Lei. Ablation resistance properties and microstructure of plasma spraying coatings[J]. Powder Metallurgy Technology, 2023, 41(3): 282-288. DOI: 10.19591/j.cnki.cn11-1974/tf.2021110013
    [3]JIANG Hong-xiang, SONG Yan, ZHAO Lei, HE Jie, ZHAO Jiu-zhou, ZHANG Li-li. Preparation and microstructure evolution of TiB2/Al composite powders by gas atomization method[J]. Powder Metallurgy Technology, 2022, 40(1): 33-39. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030039
    [4]CHEN Jian, HUANG Yi-ping, ZHU Rui, ZHOU Li, DENG Xin, WU Shang-hua, LIU Bing-yao. Microstructure of ultrafine graded cemented carbides with cubic rich surface[J]. Powder Metallurgy Technology, 2021, 39(2): 117-121. DOI: 10.19591/j.cnki.cn11-1974/tf.2020010005
    [5]Cai Feng, Liu Wei, Lin Xueqiang, Lu Minxu. Microstructure and CO2 corrosion resistance of Fe-based amorphous coating prepared by oxy fuel ionization (OFI) spraying method[J]. Powder Metallurgy Technology, 2013, 31(2): 132-138. DOI: 10.3969/j.issn.1001-3784.2013.02.010
    [6]The effect of sintering conditions and composition on mechanical property response of Cr containing PM steels[J]. Powder Metallurgy Technology, 2011, 29(4): 304-307.
    [7]Fabrication methods and formation mechanism of surface gradient zone of cemented carbides[J]. Powder Metallurgy Technology, 2003, 21(5): 295-299. DOI: 10.3321/j.issn:1001-3784.2003.05.008
    [8]Li Zhongquan, Li Yulian. DETERMINATION OF SPECIFIC SURFACE OF POWDERS BY GAS ADSORPTION METHOD[J]. Powder Metallurgy Technology, 1993, 11(4): 289-294.
    [9]Ma Huanong. DISCUSSION ON METHODS FOR EVALUATING SURFACE ROUGHNESS OF P/M PRODUCTS (EXCLUDING CEMENTED CARBIDE AND FILTER)[J]. Powder Metallurgy Technology, 1993, 11(1): 59-65.
    [10]Huang Yongshu, Shen Bangru. MEASUREMENT OF SPECIFIC SURFACE AREA OF POWDER BY BLAINE'S PERMEABILITY METHOD[J]. Powder Metallurgy Technology, 1984, 2(3): 41-44.
  • Cited by

    Periodical cited type(3)

    1. 李家科,刘欣,王艳香,范学运,郭平春. VR技术在燃烧合成粉体实验教学中的应用. 科技视界. 2022(02): 39-40 .
    2. 邢海瑞,张向阳,杨帆,胡平,王快社. 金属氧化物增强钼合金组织性能研究进展. 中国钼业. 2022(02): 8-17 .
    3. 卢杨,王晶,赫丽杰,王复栋,张家铭. 镁铝尖晶石粉体制备及其在发光材料领域的研究进展. 无机盐工业. 2022(09): 39-46 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (451) PDF downloads (14) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return