AdvancedSearch
WANG Hai-lu, LIU Jun, LIN Li, ZHANG Chao, ZHANG Lu-dong, KE Jian-zhong, LI Hua-ying. Compacting relative density and force chain analysis of powders with different particle size ratios based on discrete element[J]. Powder Metallurgy Technology, 2021, 39(6): 490-498. DOI: 10.19591/j.cnki.cn11-1974/tf.2019120014
Citation: WANG Hai-lu, LIU Jun, LIN Li, ZHANG Chao, ZHANG Lu-dong, KE Jian-zhong, LI Hua-ying. Compacting relative density and force chain analysis of powders with different particle size ratios based on discrete element[J]. Powder Metallurgy Technology, 2021, 39(6): 490-498. DOI: 10.19591/j.cnki.cn11-1974/tf.2019120014

Compacting relative density and force chain analysis of powders with different particle size ratios based on discrete element

More Information
  • Corresponding author:

    LIU Jun, E-mail: liujun@nbu.edu.cn

  • Received Date: February 13, 2020
  • Available Online: November 02, 2021
  • Using the PFC three-dimensional numerical simulation software, the law of relative density change and force chain distribution during the pressing process were obtained by changing the particle size distribution of powders to establish the cold pressing models. Under the specific particle size ratio of powders, the compacts with the highest relative density could be obtained. In the results, the large, medium, and fine particles in the mass ratio of 60:15:25 show the highest compact relative density, and the compact relative density does not increase with the increase of the fine powder ratio. As the proportion of the additional fine powders rises during the pressing process, the greater strain can be generated in the pressing direction. The lateral pressure coefficient and Poisson's ratio are less affected by the particle size distribution of powders, which can decline due to the lack of sufficient driving force and displacement space in the case that the compacts have obtained the higher relative density in the later stage of the compaction. The number of force chains for the powders with the mixed particle size is much greater than that of the powders in the single particle size. In the case that the number of strong force chains is sufficient, the higher compact relative density can be obtained, combining a large number of weak force chains.
  • [1]
    黄培云. 粉末冶金原理. 1版. 北京: 冶金工业出版社, 1982

    Huang P Y. Theory of Power Metallurgy. 1st Ed. Beijing: Metallurgical Industry Press, 1982
    [2]
    Amherd Hidalgo A, Frykholm R, Ebel T, et al. Powder metallurgy strategies to improve properties and processing of titanium alloys: A review. Adv Eng Mater, 2017, 19(6): 1600743 DOI: 10.1002/adem.201600743
    [3]
    郎利辉, 王刚, 黄西娜, 等. 粉末粒度对热等静压法制备2A12铝合金组织与性能的影响. 粉末冶金材料科学与工程, 2016, 21(1): 85 DOI: 10.3969/j.issn.1673-0224.2016.01.012

    Lang L H, Wang G, Huang X N, et al. Effect of powder size on microstructure and properties of 2A12 aluminium alloy prepared by hot isostatic pressing. Mater Sci Eng Powder Metall, 2016, 21(1): 85 DOI: 10.3969/j.issn.1673-0224.2016.01.012
    [4]
    林立, 刘军, 周纯, 等. 金属粉末冲击压制过程中冲模质量及颗粒模型的优化分析. 粉末冶金技术, 2018, 36(3): 182

    Lin L, Liu J, Zhou C, et al. Optimization analysis of die mass and particle model in metal powder impact compaction. Powder Metall Technol, 2018, 36(3): 182
    [5]
    丁义超, 尹红, 姜自莲. 铁基复合材料的制备技术与研究进展. 热加工工艺, 2013, 42(24): 22

    Ding Y C, Yin H, Jiang Z L. Preparation technology and research progress of iron-based composite. Hot Working Technol, 2013, 42(24): 22
    [6]
    耿学文, 赵洪波, 樊振军. 铁基复合材料的研究进展综述. 中国科技信息, 2009(6): 34

    Geng X W, Zhao H B, Fan Z J. Study of ferrous matrix composites. China Sci Technol Inf, 2009(6): 34
    [7]
    张超, 刘军, 罗晓龙, 等. 基于离散元法的金属粉末压制加载速度对压力分布影响. 粉末冶金技术, 2019, 37(2): 98

    Zhang C, Liu J, Luo X L, et al. Effect of loading speed on pressure distribution in metal powder pressing based on discrete element method. Powder Metall Technol, 2019, 37(2): 98
    [8]
    Skrinjar O, Larsson P L. On discrete element modelling of compaction of powders with size ratio. Comput Mater Sci, 2004, 31(1-2): 131 DOI: 10.1016/j.commatsci.2004.02.005
    [9]
    叶先勇, 刘京雷, 徐宏, 等. 粉末粒径和压制压力对316L不锈钢多孔材料结构特性的影响. 粉末冶金材料科学与工程, 2013, 18(3): 409 DOI: 10.3969/j.issn.1673-0224.2013.03.017

    Ye X Y, Liu J L, Xu H, et al. Effects of powder size and molding pressure on structural characterization of 316L stainless steel porous material. Mater Sci Eng Powder Metall, 2013, 18(3): 409 DOI: 10.3969/j.issn.1673-0224.2013.03.017
    [10]
    朱鹏程. 粉末粒度与制备工艺对烧结钕铁硼性能的影响[学位论文]. 南京: 南京理工大学, 2012

    Zhu P C. Effects of the Powder Size and Preparation Process on the Performance of Sintered NdFeB [Dissertation]. Nanjing: Nanjing University of Science and Technology, 2012
    [11]
    闫志巧, 陈峰, 蔡一湘. 不同粒径Ti粉的高速压制行为和烧结性能. 金属学报, 2012, 48(3): 379 DOI: 10.3724/SP.J.1037.2011.00612

    Yan Z Q, Chen F, Cai Y X. High velocity compaction behavior and sintered properties of Ti powders with different particle sizes. Acta Metall Sin, 2012, 48(3): 379 DOI: 10.3724/SP.J.1037.2011.00612
    [12]
    Yan Z Q, Chen F, Cai Y, et al. Influence of particle size on property of Ti‒6Al‒4V alloy prepared by high-velocity compaction. Trans Nonferrous Met Soc China, 2013, 23(2): 361 DOI: 10.1016/S1003-6326(13)62470-X
    [13]
    杨志超. 粉末粒度分布对烧结钕铁硼微观结构形成的影响. 山西冶金, 2014, 37(5): 11 DOI: 10.3969/j.issn.1672-1152.2014.05.004

    Yang Z C. Effect of particle size distribution on the formation of the microstructure of sintered NdFeB. Shanxi Metall, 2014, 37(5): 11 DOI: 10.3969/j.issn.1672-1152.2014.05.004
    [14]
    潘诗琰, 代文杰, 周子豪, 等. 液相烧结过程中粉末粒径分布演化模拟研究. 粉末冶金技术, 2018, 36(6): 409

    Pan S Y, Dai W J, Zhou Z H, et al. Simulation study on size distribution evolution of powder particles in liquid phase sintering. Powder Metall Technol, 2018, 36(6): 409
    [15]
    Cundall P A, Strack O D L. Discussion: A discrete numerical model for granular assemblies. Géotechnique, 1980, 30(3): 331
    [16]
    中华人民共和国国家质量监督检验检疫总局. GB/T 1480-2012金属粉末干筛分法测定粒度. 北京: 中国标准出版社, 2013

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. GB/T 1480-2012 Metal Powder Dry Screening Method. Beijing: China Standard Press, 2013
    [17]
    Japanese Industrial Standards Committee. JIS Z 2510-2004 Metallic Powders—Determination of Particle Size by Dry Sieving. Tokyo: Japan Marine Standard Association, 2004
    [18]
    中华人民共和国工业和信息化部. YB/T 5308-2011粉末冶金用还原铁粉. 北京: 冶金工业出版社, 2012

    Ministry of Industry and Information Technology of the People's Republic of China. YB/T 5308-2011 Reduction Iron Powder for Powder Metallurgy. Beijing: Metallurgical Industry Press, 2012
    [19]
    全国生铁及铁合金标准化技术委员会. 20153628-T-602粉末冶金用水雾化纯铁粉、合金铁粉国家标准编制说明. 北京: 中国标准出版, 2015

    National Pig Iron and Ferroalloy Standardization Technical Committee. 20153628-T-602 Water Atomized Pure Iron Powder for Powder Metallurgy, Specification for the Preparation of National Standards for Alloy Iron Powder. Beijing: China Standard Press, 2015
    [20]
    国家市场监督管理总局. GB/T 19734-2018粉末冶金用水雾化纯铁粉、合金钢粉. 北京: 中国标准出版社, 2018

    State Administration of Market Regulation. GB/T 19734-2018 Water Atomized Pure Iron Powder, Alloy Steel Powder for Powder Metallurgy. Beijing: China Standard Press, 2018
    [21]
    胡仙平. 高速加载下金属颗粒接触过程的影响因素分析[学位论文]. 宁波: 宁波大学, 2016

    Hu X P. Analysis on the Influential Factors of Metal Particle Contact Process under High Speed Loading [Dissertation]. Ningbo: Ningbo University, 2016

Catalog

    Article Metrics

    Article views (791) PDF downloads (115) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return