Citation: | WANG Hai-lu, LIU Jun, LIN Li, ZHANG Chao, ZHANG Lu-dong, KE Jian-zhong, LI Hua-ying. Compacting relative density and force chain analysis of powders with different particle size ratios based on discrete element[J]. Powder Metallurgy Technology, 2021, 39(6): 490-498. DOI: 10.19591/j.cnki.cn11-1974/tf.2019120014 |
[1] |
黄培云. 粉末冶金原理. 1版. 北京: 冶金工业出版社, 1982
Huang P Y. Theory of Power Metallurgy. 1st Ed. Beijing: Metallurgical Industry Press, 1982
|
[2] |
Amherd Hidalgo A, Frykholm R, Ebel T, et al. Powder metallurgy strategies to improve properties and processing of titanium alloys: A review. Adv Eng Mater, 2017, 19(6): 1600743 DOI: 10.1002/adem.201600743
|
[3] |
郎利辉, 王刚, 黄西娜, 等. 粉末粒度对热等静压法制备2A12铝合金组织与性能的影响. 粉末冶金材料科学与工程, 2016, 21(1): 85 DOI: 10.3969/j.issn.1673-0224.2016.01.012
Lang L H, Wang G, Huang X N, et al. Effect of powder size on microstructure and properties of 2A12 aluminium alloy prepared by hot isostatic pressing. Mater Sci Eng Powder Metall, 2016, 21(1): 85 DOI: 10.3969/j.issn.1673-0224.2016.01.012
|
[4] |
林立, 刘军, 周纯, 等. 金属粉末冲击压制过程中冲模质量及颗粒模型的优化分析. 粉末冶金技术, 2018, 36(3): 182
Lin L, Liu J, Zhou C, et al. Optimization analysis of die mass and particle model in metal powder impact compaction. Powder Metall Technol, 2018, 36(3): 182
|
[5] |
丁义超, 尹红, 姜自莲. 铁基复合材料的制备技术与研究进展. 热加工工艺, 2013, 42(24): 22
Ding Y C, Yin H, Jiang Z L. Preparation technology and research progress of iron-based composite. Hot Working Technol, 2013, 42(24): 22
|
[6] |
耿学文, 赵洪波, 樊振军. 铁基复合材料的研究进展综述. 中国科技信息, 2009(6): 34
Geng X W, Zhao H B, Fan Z J. Study of ferrous matrix composites. China Sci Technol Inf, 2009(6): 34
|
[7] |
张超, 刘军, 罗晓龙, 等. 基于离散元法的金属粉末压制加载速度对压力分布影响. 粉末冶金技术, 2019, 37(2): 98
Zhang C, Liu J, Luo X L, et al. Effect of loading speed on pressure distribution in metal powder pressing based on discrete element method. Powder Metall Technol, 2019, 37(2): 98
|
[8] |
Skrinjar O, Larsson P L. On discrete element modelling of compaction of powders with size ratio. Comput Mater Sci, 2004, 31(1-2): 131 DOI: 10.1016/j.commatsci.2004.02.005
|
[9] |
叶先勇, 刘京雷, 徐宏, 等. 粉末粒径和压制压力对316L不锈钢多孔材料结构特性的影响. 粉末冶金材料科学与工程, 2013, 18(3): 409 DOI: 10.3969/j.issn.1673-0224.2013.03.017
Ye X Y, Liu J L, Xu H, et al. Effects of powder size and molding pressure on structural characterization of 316L stainless steel porous material. Mater Sci Eng Powder Metall, 2013, 18(3): 409 DOI: 10.3969/j.issn.1673-0224.2013.03.017
|
[10] |
朱鹏程. 粉末粒度与制备工艺对烧结钕铁硼性能的影响[学位论文]. 南京: 南京理工大学, 2012
Zhu P C. Effects of the Powder Size and Preparation Process on the Performance of Sintered NdFeB [Dissertation]. Nanjing: Nanjing University of Science and Technology, 2012
|
[11] |
闫志巧, 陈峰, 蔡一湘. 不同粒径Ti粉的高速压制行为和烧结性能. 金属学报, 2012, 48(3): 379 DOI: 10.3724/SP.J.1037.2011.00612
Yan Z Q, Chen F, Cai Y X. High velocity compaction behavior and sintered properties of Ti powders with different particle sizes. Acta Metall Sin, 2012, 48(3): 379 DOI: 10.3724/SP.J.1037.2011.00612
|
[12] |
Yan Z Q, Chen F, Cai Y, et al. Influence of particle size on property of Ti‒6Al‒4V alloy prepared by high-velocity compaction. Trans Nonferrous Met Soc China, 2013, 23(2): 361 DOI: 10.1016/S1003-6326(13)62470-X
|
[13] |
杨志超. 粉末粒度分布对烧结钕铁硼微观结构形成的影响. 山西冶金, 2014, 37(5): 11 DOI: 10.3969/j.issn.1672-1152.2014.05.004
Yang Z C. Effect of particle size distribution on the formation of the microstructure of sintered NdFeB. Shanxi Metall, 2014, 37(5): 11 DOI: 10.3969/j.issn.1672-1152.2014.05.004
|
[14] |
潘诗琰, 代文杰, 周子豪, 等. 液相烧结过程中粉末粒径分布演化模拟研究. 粉末冶金技术, 2018, 36(6): 409
Pan S Y, Dai W J, Zhou Z H, et al. Simulation study on size distribution evolution of powder particles in liquid phase sintering. Powder Metall Technol, 2018, 36(6): 409
|
[15] |
Cundall P A, Strack O D L. Discussion: A discrete numerical model for granular assemblies. Géotechnique, 1980, 30(3): 331
|
[16] |
中华人民共和国国家质量监督检验检疫总局. GB/T 1480-2012金属粉末干筛分法测定粒度. 北京: 中国标准出版社, 2013
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. GB/T 1480-2012 Metal Powder Dry Screening Method. Beijing: China Standard Press, 2013
|
[17] |
Japanese Industrial Standards Committee. JIS Z 2510-2004 Metallic Powders—Determination of Particle Size by Dry Sieving. Tokyo: Japan Marine Standard Association, 2004
|
[18] |
中华人民共和国工业和信息化部. YB/T 5308-2011粉末冶金用还原铁粉. 北京: 冶金工业出版社, 2012
Ministry of Industry and Information Technology of the People's Republic of China. YB/T 5308-2011 Reduction Iron Powder for Powder Metallurgy. Beijing: Metallurgical Industry Press, 2012
|
[19] |
全国生铁及铁合金标准化技术委员会. 20153628-T-602粉末冶金用水雾化纯铁粉、合金铁粉国家标准编制说明. 北京: 中国标准出版, 2015
National Pig Iron and Ferroalloy Standardization Technical Committee. 20153628-T-602 Water Atomized Pure Iron Powder for Powder Metallurgy, Specification for the Preparation of National Standards for Alloy Iron Powder. Beijing: China Standard Press, 2015
|
[20] |
国家市场监督管理总局. GB/T 19734-2018粉末冶金用水雾化纯铁粉、合金钢粉. 北京: 中国标准出版社, 2018
State Administration of Market Regulation. GB/T 19734-2018 Water Atomized Pure Iron Powder, Alloy Steel Powder for Powder Metallurgy. Beijing: China Standard Press, 2018
|
[21] |
胡仙平. 高速加载下金属颗粒接触过程的影响因素分析[学位论文]. 宁波: 宁波大学, 2016
Hu X P. Analysis on the Influential Factors of Metal Particle Contact Process under High Speed Loading [Dissertation]. Ningbo: Ningbo University, 2016
|
[1] | DENG Xiaochun, KANG Xiaodong, ZHANG Guohua. Preparation of WC–xVC composite powders and the effect of high content VC on microstructure and mechanical properties of WC–Co based cemented carbides[J]. Powder Metallurgy Technology, 2024, 42(3): 226-233, 254. DOI: 10.19591/j.cnki.cn11-1974/tf.2023120013 |
[2] | YAO Hui-long, XIONG Ning, WANG Ling, QIN Ying-nan, ZHOU Wu-ping, YANG Lin. Effect of cyclic heat treatment on impact toughness of 93W–5Ni–2Fe tungsten heavy alloy[J]. Powder Metallurgy Technology, 2021, 39(3): 269-273. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030009 |
[3] | Chen Ding, Hu Shan, Zhang Zhongjian, Xu Tao, Peng Wen, Yuan Hongmei. Research status of fracture toughness testing for cemented carbides[J]. Powder Metallurgy Technology, 2013, 31(3): 216-222. DOI: 10.3969/j.issn.1001-3784.2013.03.011 |
[4] | Xie Zhuangde, Shen Jun, Dong Yinsheng, Zhou Bide, Li Qingchun. RAPIDLY SOLIDIFIED ALUMINUM-SILICON ALLOYS PRODUCTION, MICROSTRUCTURE AND FRACTURE BEHAVIOR[J]. Powder Metallurgy Technology, 2000, 18(2): 111-116. |
[5] | Liu Ning, Jiang Yong, Lu Qingrong, Xiong Weihao, Cui Kun, Hu Zhenhua. EFFECT OF CHEMICAL COMPOSITION ON THE FRACTURE TOUGHNESS OF Ti(C, N) BASED CERMETS[J]. Powder Metallurgy Technology, 1999, 17(4): 269-272. |
[6] | Cao Shunhua, Xu Runze. Measurement of Sintered Steel's Fracture Toughness by Repeated Impact with Low Energy[J]. Powder Metallurgy Technology, 1997, 15(3): 217-219. |
[7] | Tong Guoquan, Wang Erde, He Shaoyuan. STUDY ON TESTING METHOD AND FRACTURE MODE OF WC-20(Fe/Co/Ni) CEMENTED CARBIDE[J]. Powder Metallurgy Technology, 1995, 13(1): 38-43. |
[8] | Luo Huahui, Shen Shuting, Cai Yixun. A STUDY OF FRACTURE TOUGHNESS OF HARDMETALS BY CHEVRON-NOTCHING METHOD[J]. Powder Metallurgy Technology, 1989, 7(3): 165-171. |
[9] | Huang Luguan. FRACTURE TOUGHNESS AND HIGH DUCTILITY OF STEEL-BONDED CARBIDE[J]. Powder Metallurgy Technology, 1986, 4(1): 10-15. |
[10] | Zhen Zhenxian, Yao Heng, Zhu Guisen, Liu Mingcheng. EFFECTS OF VACUUM HEAT-TREATMENT ON FRACTURE TOUGHNESS OF HEAVY ALLOYS (95W-3.5Ni-1.5Fe)[J]. Powder Metallurgy Technology, 1984, 2(4): 11-15. |