AdvancedSearch
WANG Kai, YI Chui-jie, HU Feng-chao, ZHAN Sheng. Study on flight and collision process of molten blast furnace slag[J]. Powder Metallurgy Technology, 2022, 40(6): 535-540. DOI: 10.19591/j.cnki.cn11-1974/tf.2020050018
Citation: WANG Kai, YI Chui-jie, HU Feng-chao, ZHAN Sheng. Study on flight and collision process of molten blast furnace slag[J]. Powder Metallurgy Technology, 2022, 40(6): 535-540. DOI: 10.19591/j.cnki.cn11-1974/tf.2020050018

Study on flight and collision process of molten blast furnace slag

More Information
  • Corresponding author:

    YI Chui-jie, E-mail: chuijieyi@vip.163.com

  • Received Date: December 13, 2020
  • Accepted Date: December 13, 2020
  • The mathematical model was established for the flight process of the molten blast furnace slag after the centrifugal graining, and the model was discretely solved by the Runge-Kutta method. The results show that, the flight distance of the slag droplets along the x direction is proportional to the diameter and the initial velocity of droplets. Due to the air flow resistance and gravity, the velocity of droplets decreases with time, and then increases slightly. Critical impact velocity of the droplets was proposed by analyzing the excess rebound energy of the slag droplets after collision with wall. The results indicate that, the critical impact velocity is an interval, and the larger the droplets, the lower the bounds. The experiments were performed with the initial droplet velocities of 10, 12, and 14 m·s‒1. The results indicate that, the actual falling distance of the slag droplets is greater than the theoretical values, because the initial velocity of the slag droplets is less than the linear velocity of the granulation plate. Meanwhile, the impact velocity of the slag droplets is between the upper and lower bound, thus no adhesion occurs.

  • [1]
    Wu J J, Wang H, Zhu X, et al. Centrifugal granulation performance of liquid with various viscosities for heat recovery of blast furnace slag. Appl Therm Eng, 2015, 89: 494 DOI: 10.1016/j.applthermaleng.2015.06.031
    [2]
    Worldsteel Association. Steel statistical yearbook [J/OL]. Worldsteel Association [2020-1]. Steel-Statistical-Yearbook-2019-concise-version. pdf (worldsteel. org)
    [3]
    Purwanto H, Akiyama T. Hydrogen production from biogas using hot slag. Int J Hydrogen Energy, 2006, 31(4): 491 DOI: 10.1016/j.ijhydene.2005.04.021
    [4]
    Li P, Yu Q B, Qin Q, et al. Kinetics of CO2/coal gasification in molten blast furnace slag. Ind Eng Chem Res, 2012, 51(49): 15872 DOI: 10.1021/ie301678s
    [5]
    Pickering S J, Hay N, Roylance T F, et al. New process for dry granulation and heat recovery from molten blast-furnace slag. Ironmaking Steelmaking, 1985, 12(1): 14
    [6]
    Kashiwaya Y, In-nami Y, Akiyama T. Mechanism of the formation of slag particles by the rotary cylinder atomization. ISIJ Int, 2010, 50(9): 1252 DOI: 10.2355/isijinternational.50.1252
    [7]
    Akiyama T, Toshio M, Jun-Ichiro Y, et al. Feasibility study of hydrogen generator with molten slag granulation. Steel Res Int, 2004, 75(2): 122 DOI: 10.1002/srin.200405937
    [8]
    Xie D, Washington B M, Norgate T, et al. Dry granulation of slags–turning waste into valuable products. CAMP-ISIJ, 2005, 18(4): 1088
    [9]
    Xie D, Pan Y, Flann R, et al. Heat recovery from slag through dry granulation // 1st CSRP Annual Conference. Melbourne, 2007: 1
    [10]
    于庆波, 刘军祥, 窦晨曦, 等. 转杯法高炉渣粒化实验研究. 东北大学学报(自然科学版), 2009, 30(8): 1163 DOI: 10.3321/j.issn:1005-3026.2009.08.025

    Yu Q B, Liu J X, Dou C X, et al. Dry granulation experiment of blast furnace slag by rotary cup atomizer. J Northeast Univ Nat Sci, 2009, 30(8): 1163 DOI: 10.3321/j.issn:1005-3026.2009.08.025
    [11]
    刘军祥, 于庆波, 李朋, 等. 高炉渣干法粒化试验研究. 钢铁, 2010, 45(2): 95 DOI: 10.13228/j.boyuan.issn0449-749x.2010.02.032

    Liu J X, Yu Q B, Li P, et al. Experimental study on dry-granulation of molten blast furnace slag. Iron Steel, 2010, 45(2): 95 DOI: 10.13228/j.boyuan.issn0449-749x.2010.02.032
    [12]
    Lin B, Wang H, Zhu X, et al. Crystallization properties of molten blast furnace slag at different cooling rates. Appl Therm Eng, 2016, 96: 432 DOI: 10.1016/j.applthermaleng.2015.11.075
    [13]
    Zhu X, Ding B, Wang H, et al. Phase evolution of blast furnace slags with variation in the binary basicity in a variable cooling process. Fuel, 2018, 219: 132 DOI: 10.1016/j.fuel.2018.01.075
    [14]
    Zhu X, Ding B, Wang H, et al. Numerical study on solidification behaviors of a molten slag droplet in the centrifugal granulation and heat recovery system. Appl Therm Eng, 2018, 130: 1033 DOI: 10.1016/j.applthermaleng.2017.11.080
    [15]
    Luo S Y, Fu J, Zhou Y M, et al. The production of hydrogen-rich gas by catalytic pyrolysis of biomass using waste heat from blast-furnace slag. Renew Energy, 2017, 101: 1030 DOI: 10.1016/j.renene.2016.09.072
    [16]
    米沙, 谢锴, 孙岱, 等. 冶金渣颗粒与空气间的换热和阻力特性. 中国有色金属学报, 2015, 25(7): 1993 DOI: 10.19476/j.ysxb.1004.0609.2015.07.032

    Mi S, Xie K, Sun D, et al. Heat transfer and resistance characteristics between metallurgical slag particles and air. Chin J Nonferrous Met, 2015, 25(7): 1993 DOI: 10.19476/j.ysxb.1004.0609.2015.07.032
    [17]
    王崇琳. 粉末飞行之研究I粉末在静止气体场中的飞行轨迹. 粉末冶金技术, 2008, 26(4): 243

    Wang C L. Investigation on the flying of powder particles Ⅰ Trajectories of flying powder particles in static atmosphere. Powder Metall Technol, 2008, 26(4): 243
    [18]
    Richter A, Nikrityuk P A. Drag forces and heat transfer coefficients for spherical, cuboidal and ellipsoidal particles in cross flow at sub-critical Reynolds numbers. Int J Heat Mass Trans, 2012, 55(4): 1343 DOI: 10.1016/j.ijheatmasstransfer.2011.09.005
    [19]
    Ni J J, Yu G S, Guo Q H, et al. Submodel for predicting slag deposition formation in slagging gasification systems. Energy Fuels, 2011, 25(3): 1004 DOI: 10.1021/ef101696a
    [20]
    Liu J X, Yu Q B, Duan W J, et al. Experimental investigation on ligament formation for molten slag granulation. Appl Therm Eng, 2014, 73(1): 888 DOI: 10.1016/j.applthermaleng.2014.08.042
    [21]
    Sun Y Q, Shen H W, Wang H, et al. Experimental investigation and modeling of cooling processes of high temperature slags. Energy, 2014, 76: 761 DOI: 10.1016/j.energy.2014.08.073
    [22]
    Ding B, Wang H, Zhu X, et al. Crystallization behaviors of blast furnace (BF) slag in a phase-change cooling process. Energy Fuels, 2016, 30(4): 3331 DOI: 10.1021/acs.energyfuels.5b03000
    [23]
    Han C, Chen M, Zhang W D, et al. Viscosity model for iron blast furnace slags in SiO2–Al2O3–CaO–MgO system. Steel Res Int, 2015, 86(6): 678 DOI: 10.1002/srin.201400340
    [24]
    王利明, 袁意林, 邵毅敏, 等. 二十辊轧机轧辊磨床砂轮动不平衡对磨削颤振的影响. 工程科学学报, 2015, 37(suppl1): 78

    Wang L M, Yuan Y L, Shao Y M, et al. Chatter analysis about roll grinder of twenty-high rolling mill in grinding process with grinding wheel dynamic imbalance fault. Chin J Eng, 2015, 37(Suppl1): 78
    [25]
    Dhirhi R, Prasad K, Shukla A, et al. Experimental study of rotating dry slag granulation unit: Operating regimes, particle size analysis and scale up. Appl Therm Eng, 2016, 107: 898 DOI: 10.1016/j.applthermaleng.2016.07.049
    [26]
    Wang L Y, Sun W Q, Li X L, et al. Flight dynamics and sensible heat recovery of granulated blast furnace slag. Open Fuels Energy Sci J, 2015, 8: 356 DOI: 10.2174/1876973X01508010356
  • Related Articles

    [1]LI Yue, ZHAO Dingguo, SU Xinlei, LIU Yan, WANG Shuhuan. Viscosity model of CoCrFeMnNi high entropy alloys[J]. Powder Metallurgy Technology, 2024, 42(4): 411-417. DOI: 10.19591/j.cnki.cn11-1974/tf.2022080008
    [2]LIU Ganhua, TANG Naifu, WANG Qi. Accurate modeling of equal-distance spiral bevel gear and the trial production by metal powder injection molding process[J]. Powder Metallurgy Technology, 2024, 42(2): 207-214. DOI: 10.19591/j.cnki.cn11-1974/tf.2021100012
    [3]Cao Ruijun, Lin Chenguang. Research progress of hardness model for WC-Co cemented carbide[J]. Powder Metallurgy Technology, 2013, 31(5): 374-378. DOI: 10.3969/j.issn.1001-3784.2013.05.011
    [4]Dai Yu, Huang Baiyun, Liu Yong, Yang Jiangao. Mathematical model and analysis of atomization process with lineal instability[J]. Powder Metallurgy Technology, 2009, 27(5): 331-335.
    [5]Heat Transfer Model of Friction Sheets during Skidding[J]. Powder Metallurgy Technology, 2003, 21(1): 19-21. DOI: 10.3321/j.issn:1001-3784.2003.01.002
    [6]Research on Sintering Model of ZAO Ceramics[J]. Powder Metallurgy Technology, 2002, 20(5): 267-270. DOI: 10.3321/j.issn:1001-3784.2002.05.002
    [7]Modified Linear Packing Density Model of Powder Particles[J]. Powder Metallurgy Technology, 2001, 19(4): 208-211. DOI: 10.3321/j.issn:1001-3784.2001.04.004
    [8]Sun Jianfei, Shen Jun, Li Zhenyu, Jia Jun, Li Qingchun. HEAT TRANSFER AND SOLIDIFICATION BEHAVIOR OF SUPERALLOY DROPLETS DURING SPRAY FORMING[J]. Powder Metallurgy Technology, 2000, 18(2): 92-97.
    [9]Yang Liushuan, Pang Lijun, Liu Yongzhang, Yang Gencang, Zhou Yaohe. PHYSICAL MODEL AND MATHEMATICAL ANALYSES ON THERMAL PROCESS OF SPRAY-DEPOSITED ZA27 ALLOY DROPLETS[J]. Powder Metallurgy Technology, 1995, 13(3): 163-169.
    [10]Zhang Ji, Li Shikui. MATHEMATICAL ANALYSIS ON TRANSVERSE RUPTURE STRENGTH OF YG15 HARDMETALS[J]. Powder Metallurgy Technology, 1993, 11(1): 15-18.

Catalog

    Article Metrics

    Article views (198) PDF downloads (48) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return