Citation: | WANG Kai, YI Chui-jie, HU Feng-chao, ZHAN Sheng. Study on flight and collision process of molten blast furnace slag[J]. Powder Metallurgy Technology, 2022, 40(6): 535-540. DOI: 10.19591/j.cnki.cn11-1974/tf.2020050018 |
The mathematical model was established for the flight process of the molten blast furnace slag after the centrifugal graining, and the model was discretely solved by the Runge-Kutta method. The results show that, the flight distance of the slag droplets along the x direction is proportional to the diameter and the initial velocity of droplets. Due to the air flow resistance and gravity, the velocity of droplets decreases with time, and then increases slightly. Critical impact velocity of the droplets was proposed by analyzing the excess rebound energy of the slag droplets after collision with wall. The results indicate that, the critical impact velocity is an interval, and the larger the droplets, the lower the bounds. The experiments were performed with the initial droplet velocities of 10, 12, and 14 m·s‒1. The results indicate that, the actual falling distance of the slag droplets is greater than the theoretical values, because the initial velocity of the slag droplets is less than the linear velocity of the granulation plate. Meanwhile, the impact velocity of the slag droplets is between the upper and lower bound, thus no adhesion occurs.
[1] |
Wu J J, Wang H, Zhu X, et al. Centrifugal granulation performance of liquid with various viscosities for heat recovery of blast furnace slag. Appl Therm Eng, 2015, 89: 494 DOI: 10.1016/j.applthermaleng.2015.06.031
|
[2] |
Worldsteel Association. Steel statistical yearbook [J/OL]. Worldsteel Association [2020-1]. Steel-Statistical-Yearbook-2019-concise-version. pdf (worldsteel. org)
|
[3] |
Purwanto H, Akiyama T. Hydrogen production from biogas using hot slag. Int J Hydrogen Energy, 2006, 31(4): 491 DOI: 10.1016/j.ijhydene.2005.04.021
|
[4] |
Li P, Yu Q B, Qin Q, et al. Kinetics of CO2/coal gasification in molten blast furnace slag. Ind Eng Chem Res, 2012, 51(49): 15872 DOI: 10.1021/ie301678s
|
[5] |
Pickering S J, Hay N, Roylance T F, et al. New process for dry granulation and heat recovery from molten blast-furnace slag. Ironmaking Steelmaking, 1985, 12(1): 14
|
[6] |
Kashiwaya Y, In-nami Y, Akiyama T. Mechanism of the formation of slag particles by the rotary cylinder atomization. ISIJ Int, 2010, 50(9): 1252 DOI: 10.2355/isijinternational.50.1252
|
[7] |
Akiyama T, Toshio M, Jun-Ichiro Y, et al. Feasibility study of hydrogen generator with molten slag granulation. Steel Res Int, 2004, 75(2): 122 DOI: 10.1002/srin.200405937
|
[8] |
Xie D, Washington B M, Norgate T, et al. Dry granulation of slags–turning waste into valuable products. CAMP-ISIJ, 2005, 18(4): 1088
|
[9] |
Xie D, Pan Y, Flann R, et al. Heat recovery from slag through dry granulation // 1st CSRP Annual Conference. Melbourne, 2007: 1
|
[10] |
于庆波, 刘军祥, 窦晨曦, 等. 转杯法高炉渣粒化实验研究. 东北大学学报(自然科学版), 2009, 30(8): 1163 DOI: 10.3321/j.issn:1005-3026.2009.08.025
Yu Q B, Liu J X, Dou C X, et al. Dry granulation experiment of blast furnace slag by rotary cup atomizer. J Northeast Univ Nat Sci, 2009, 30(8): 1163 DOI: 10.3321/j.issn:1005-3026.2009.08.025
|
[11] |
刘军祥, 于庆波, 李朋, 等. 高炉渣干法粒化试验研究. 钢铁, 2010, 45(2): 95 DOI: 10.13228/j.boyuan.issn0449-749x.2010.02.032
Liu J X, Yu Q B, Li P, et al. Experimental study on dry-granulation of molten blast furnace slag. Iron Steel, 2010, 45(2): 95 DOI: 10.13228/j.boyuan.issn0449-749x.2010.02.032
|
[12] |
Lin B, Wang H, Zhu X, et al. Crystallization properties of molten blast furnace slag at different cooling rates. Appl Therm Eng, 2016, 96: 432 DOI: 10.1016/j.applthermaleng.2015.11.075
|
[13] |
Zhu X, Ding B, Wang H, et al. Phase evolution of blast furnace slags with variation in the binary basicity in a variable cooling process. Fuel, 2018, 219: 132 DOI: 10.1016/j.fuel.2018.01.075
|
[14] |
Zhu X, Ding B, Wang H, et al. Numerical study on solidification behaviors of a molten slag droplet in the centrifugal granulation and heat recovery system. Appl Therm Eng, 2018, 130: 1033 DOI: 10.1016/j.applthermaleng.2017.11.080
|
[15] |
Luo S Y, Fu J, Zhou Y M, et al. The production of hydrogen-rich gas by catalytic pyrolysis of biomass using waste heat from blast-furnace slag. Renew Energy, 2017, 101: 1030 DOI: 10.1016/j.renene.2016.09.072
|
[16] |
米沙, 谢锴, 孙岱, 等. 冶金渣颗粒与空气间的换热和阻力特性. 中国有色金属学报, 2015, 25(7): 1993 DOI: 10.19476/j.ysxb.1004.0609.2015.07.032
Mi S, Xie K, Sun D, et al. Heat transfer and resistance characteristics between metallurgical slag particles and air. Chin J Nonferrous Met, 2015, 25(7): 1993 DOI: 10.19476/j.ysxb.1004.0609.2015.07.032
|
[17] |
王崇琳. 粉末飞行之研究I粉末在静止气体场中的飞行轨迹. 粉末冶金技术, 2008, 26(4): 243
Wang C L. Investigation on the flying of powder particles Ⅰ Trajectories of flying powder particles in static atmosphere. Powder Metall Technol, 2008, 26(4): 243
|
[18] |
Richter A, Nikrityuk P A. Drag forces and heat transfer coefficients for spherical, cuboidal and ellipsoidal particles in cross flow at sub-critical Reynolds numbers. Int J Heat Mass Trans, 2012, 55(4): 1343 DOI: 10.1016/j.ijheatmasstransfer.2011.09.005
|
[19] |
Ni J J, Yu G S, Guo Q H, et al. Submodel for predicting slag deposition formation in slagging gasification systems. Energy Fuels, 2011, 25(3): 1004 DOI: 10.1021/ef101696a
|
[20] |
Liu J X, Yu Q B, Duan W J, et al. Experimental investigation on ligament formation for molten slag granulation. Appl Therm Eng, 2014, 73(1): 888 DOI: 10.1016/j.applthermaleng.2014.08.042
|
[21] |
Sun Y Q, Shen H W, Wang H, et al. Experimental investigation and modeling of cooling processes of high temperature slags. Energy, 2014, 76: 761 DOI: 10.1016/j.energy.2014.08.073
|
[22] |
Ding B, Wang H, Zhu X, et al. Crystallization behaviors of blast furnace (BF) slag in a phase-change cooling process. Energy Fuels, 2016, 30(4): 3331 DOI: 10.1021/acs.energyfuels.5b03000
|
[23] |
Han C, Chen M, Zhang W D, et al. Viscosity model for iron blast furnace slags in SiO2–Al2O3–CaO–MgO system. Steel Res Int, 2015, 86(6): 678 DOI: 10.1002/srin.201400340
|
[24] |
王利明, 袁意林, 邵毅敏, 等. 二十辊轧机轧辊磨床砂轮动不平衡对磨削颤振的影响. 工程科学学报, 2015, 37(suppl1): 78
Wang L M, Yuan Y L, Shao Y M, et al. Chatter analysis about roll grinder of twenty-high rolling mill in grinding process with grinding wheel dynamic imbalance fault. Chin J Eng, 2015, 37(Suppl1): 78
|
[25] |
Dhirhi R, Prasad K, Shukla A, et al. Experimental study of rotating dry slag granulation unit: Operating regimes, particle size analysis and scale up. Appl Therm Eng, 2016, 107: 898 DOI: 10.1016/j.applthermaleng.2016.07.049
|
[26] |
Wang L Y, Sun W Q, Li X L, et al. Flight dynamics and sensible heat recovery of granulated blast furnace slag. Open Fuels Energy Sci J, 2015, 8: 356 DOI: 10.2174/1876973X01508010356
|
[1] | LI Yue, ZHAO Dingguo, SU Xinlei, LIU Yan, WANG Shuhuan. Viscosity model of CoCrFeMnNi high entropy alloys[J]. Powder Metallurgy Technology, 2024, 42(4): 411-417. DOI: 10.19591/j.cnki.cn11-1974/tf.2022080008 |
[2] | LIU Ganhua, TANG Naifu, WANG Qi. Accurate modeling of equal-distance spiral bevel gear and the trial production by metal powder injection molding process[J]. Powder Metallurgy Technology, 2024, 42(2): 207-214. DOI: 10.19591/j.cnki.cn11-1974/tf.2021100012 |
[3] | SUN Shi-min, HUANG Shang-yu, ZHOU Meng-cheng, LEI Yu, WANG Bin. Modified Drucker-Prager Cap model of Ti-6Al-4V powders for cold die compaction[J]. Powder Metallurgy Technology, 2018, 36(4): 261-269. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.04.004 |
[4] | Dai Yu, Huang Baiyun, Liu Yong, Yang Jiangao. Mathematical model and analysis of atomization process with lineal instability[J]. Powder Metallurgy Technology, 2009, 27(5): 331-335. |
[5] | Research on Sintering Model of ZAO Ceramics[J]. Powder Metallurgy Technology, 2002, 20(5): 267-270. DOI: 10.3321/j.issn:1001-3784.2002.05.002 |
[6] | Sun Jianfei, Shen Jun, Li Zhenyu, Jia Jun, Li Qingchun. HEAT TRANSFER AND SOLIDIFICATION BEHAVIOR OF SUPERALLOY DROPLETS DURING SPRAY FORMING[J]. Powder Metallurgy Technology, 2000, 18(2): 92-97. |
[7] | Cheng Yuanfang, Guo Shiju, Lai Heyi. COUPLING MODEL OF MULTIPLE SINTERING MECHANISMS FOR THE INITIAL STAGE SINTERING[J]. Powder Metallurgy Technology, 1999, 17(4): 257-263. |
[8] | Cheng Yuanfang, Guo Shiju, Lai Heyi. THEORETICAL MODELLING PROGRESS——1.THE COMPARISON OF THE UNIT MODEL FOR THE FIRST STAGE OF GRAVITY SINTERING[J]. Powder Metallurgy Technology, 1999, 17(3): 216-221. |
[9] | Yang Liushuan, Pang Lijun, Liu Yongzhang, Yang Gencang, Zhou Yaohe. PHYSICAL MODEL AND MATHEMATICAL ANALYSES ON THERMAL PROCESS OF SPRAY-DEPOSITED ZA27 ALLOY DROPLETS[J]. Powder Metallurgy Technology, 1995, 13(3): 163-169. |
[10] | Zhang Ji, Li Shikui. MATHEMATICAL ANALYSIS ON TRANSVERSE RUPTURE STRENGTH OF YG15 HARDMETALS[J]. Powder Metallurgy Technology, 1993, 11(1): 15-18. |
1. |
魏民,王子宁,谭志涵. 基于NSGA-II的TiBw/TA15铣削参数多目标优化. 北华航天工业学院学报. 2025(01): 1-5 .
![]() | |
2. |
李婉莹,韩秀丽,张强,王锐,武高辉. GO/Ti基复合材料界面性质的第一性原理研究. 精密成形工程. 2024(04): 10-18 .
![]() | |
3. |
戴昌晟,高义民,缪喆宇,肖鹏,李烨飞,李强. 非均匀构型TiB增强钛基复合材料的制备及其组织性能研究. 热加工工艺. 2024(23): 52-59+68 .
![]() | |
4. |
钟亮,付玉,曹召勋,王荫洋,徐永东. (Ti_5Si_3+TiB_w)/TC11复合材料力学性能与摩擦学性能. 有色金属工程. 2023(02): 22-32 .
![]() | |
5. |
廖婷婷,江万勇,陈嘉鑫. 热压烧结制备碳化钛增强石墨烯/铜复合材料的力学及其摩擦性能探究. 热加工工艺. 2023(14): 64-66+70 .
![]() | |
6. |
欧阳文博,任利娜,黄先明,陈永楠. 铜与氧化石墨烯协同增强钛基复合材料显微组织及性能研究. 钛工业进展. 2022(04): 25-29 .
![]() | |
7. |
刘莹莹,付明杰,王富鑫,何恩光. 激光焊接TiB_w/TA15复合材料组织结构演变. 材料科学与工艺. 2022(05): 60-68 .
![]() | |
8. |
魏子超,韩远飞,李劭鹏,黄光法,毛建伟,吕维洁. 非连续纳米相增强钛基复合材料研究进展与展望. 航空制造技术. 2022(16): 104-125 .
![]() | |
9. |
李少夫,杨亚锋. 用于制备高性能钛基复合材料的碳包覆钛复合粉体研究进展. 粉末冶金技术. 2022(05): 421-430+450 .
![]() | |
10. |
刘壮,周昆,吕凯红. 热加工对钛基复合材料组织和性能的影响. 广东化工. 2021(10): 1-3+16 .
![]() | |
11. |
杨淑贞,王明. 数字图像处理的TiC/钨基复合材料烧蚀形貌重构. 兵器材料科学与工程. 2021(05): 92-96 .
![]() |