Citation: | LI Huaying, LIU Jun, ZHANG Chao, ZHANG Ludong, WANG Hailu, KE Jianzhong. Relative density of conical parts under impact loading based ondiscrete element[J]. Powder Metallurgy Technology, 2023, 41(4): 322-329. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030016 |
Metal powder products with the different shapes have the different pressing behaviors under the high speed pressing, easily leading to the change in relative density and density uniformity. Most of powder products contain the taper angle structure, and the densification degree of metal powders will change with the taper angle in the process of pressing. The relative density of the conical parts at different angles under impact loading was investigated by discrete element software PFC3D in this paper. It is found that, the relative density shows the fluctuating variation with the multiple peaks and troughs when the taper angle is between 30° and 60°, but the overall trend is upward, and the relative density reaches the maximum value in the trough change with the taper angle between 45° and 60°. When the taper angle is greater than 60°, the relative density decreases. With the increase of the friction coefficient, the relative density decreases, and the effect on the small taper angle parts increases. The comprehensive analysis shows that, the taper angles at 45° and 60° are always near the peak relative density, and the uniformity coefficient is smaller than other angles. 45° is the excellent angle for the taper angle parts, showing the higher relative density and uniformity. The experimental results verify the accuracy of the simulation, providing the theoretical basis for the optimal pressing of conical parts.
[1] |
黄培云. 粉末冶金原理. 北京: 冶金工业出版社, 1997
Huang P Y. Principles of Powder Metallurgy. Beijing: Metallurgical Industry Press, 1997
|
[2] |
Ransing R S, Gethin D T, Khoei A R, et al. Powder compaction modelling via the discrete and finite element method. Mater Des, 2000, 21(4): 263 DOI: 10.1016/S0261-3069(99)00081-3
|
[3] |
PM Modnet Modelling Group. Comparison of computer models representing powder compaction process. Powder Metall, 1999, 42(4): 301 DOI: 10.1179/003258999665648
|
[4] |
林立. 金属粉末粒径分布对相对密度影响研究[学位论文]. 宁波: 宁波大学, 2019
Lin L. Research on the Influence of Metal Powder Particle Size Distribution on Density [Dissertation]. Ningbo: Ningbo University, 2019
|
[5] |
张璐栋, 刘军, 罗晓龙, 等. 基于离散元法的颗粒高速压制模拟及动态力学分析. 粉末冶金技术, 2020, 38(5): 350
Zhang L D, Liu J, Luo X L, et al. High-speed particle compaction simulation and dynamic mechanical analysis based on discrete element method. Powder Metall Technol, 2020, 38(5): 350
|
[6] |
张超, 刘军, 罗晓龙, 等. 基于离散元法的金属粉末压制加载速度对压力分布影响. 粉末冶金技术, 2019, 37(2): 98
Zhang C, Liu J, Luo X L, et al. The influence of metal powder pressing loading speed on pressure distribution based on discrete element method. Powder Metall Technol, 2019, 37(2): 98
|
[7] |
Matuttis H G, Luding S, Herrmann H J. Discrete element simulations of dense packings and heaps made of spherical and non-spherical particles. Powder Technol, 2000, 109(1): 278
|
[8] |
Coube O, Riedel H. Numerical simulation of metal powder die compaction with special consideration of cracking. Powder Metall, 2000, 43(2): 123 DOI: 10.1179/003258900665871
|
[9] |
Kim K T, Lee H T. Effect of friction between powder and a mandrel on densification of iron powder during cold isostatic pressing. Int J Mech Sci, 1998, 40(6): 507 DOI: 10.1016/S0020-7403(97)00063-5
|
[10] |
Wikman B, Solimannezhad N, Larsson R, et al. Wall friction coefficient estimation through modelling of powder die pressing experiment. Powder Metall, 2000, 43(2): 132 DOI: 10.1179/003258900665880
|
[11] |
刘运展, 胡建华, 黄尚宇, 等. Ag−Cu钎料粉末压制致密化行为. 锻压技术, 2018, 43(4): 76
Liu Y Z, Hu J H, Huang S Y, et al. Densification behavior of Ag−Cu solder powder compaction. Forg Technol, 2018, 43(4): 76
|
[12] |
于世伟, 周剑, 张炜, 等. 粉末高速压制成形件密度影响因素分析. 中国机械工程, 2018, 29(9): 1120 DOI: 10.3969/j.issn.1004-132X.2018.09.017
Yu S W, Zhou J, Zhang W, et al. Analysis of factors affecting the density of high-speed powder compaction parts. China Mech Eng, 2018, 29(9): 1120 DOI: 10.3969/j.issn.1004-132X.2018.09.017
|
[13] |
马志伟. 单向压制时粉末冶金台阶零件的密度分布规律研究[学位论文]. 合肥: 合肥工业大学, 2011
Ma Z W. Study on the Density Distribution of Powder Metallurgy Step Parts during Unidirectional Pressing [Dissertation]. Hefei: Hefei University of Technology, 2011
|
[14] |
张鑫龙, 贺久强, 韩聪, 等. 椭圆截面管件充液压制变形与应力分析. 机械工程学报, 2017, 53(18): 49 DOI: 10.3901/JME.2017.17.049
Zhang X L, He J Q, Han C, et al. Deformation and stress analysis of elliptical section pipe fittings under hydraulic pressure. J Mech Eng, 2017, 53(18): 49 DOI: 10.3901/JME.2017.17.049
|
[15] |
高硕. 铁基粉末冶金同步器锥环压制成形数值模拟[学位论文]. 西安: 西安工业大学, 2019
Gao S. Numerical Simulation of Compression Forming of Iron-Based Powder Metallurgy Synchronizer Cone Ring [Dissertation]. Xi'an: Xi'an Technological University, 2019
|
[16] |
陈玉珍, 李春峰, 马宝山. 锥形件电磁成形数值模拟及试验研究. 塑性工程学报, 2008(5): 127
Chen Y Z, Li C F, Ma B S. Numerical simulation and experimental research on electromagnetic forming of tapered parts. J Plast Eng, 2008(5): 127
|
[17] |
李达, 章凯, 李萍. 铝粉烧结锥形件压扭成形模拟及实验研究. 精密成形工程, 2010, 2(4): 15
Li D, Zhang K, Li P. Simulation and experimental research on compression and torsion forming of aluminum powder sintered cone parts. Precis Form Eng, 2010, 2(4): 15
|
[18] |
孙其诚, 王光谦. 颗粒物质力学导论. 北京: 科学出版社, 2009
Sun Q C, Wang G Q. Introduction to Mechanics of Granular Matter. Beijing: Science Press, 2009
|