AdvancedSearch
GAO Chuhan, WU Wenheng, ZHANG Liang. Research status of additive manufacturing technology used for high temperature titanium alloys and titanium matrix composites[J]. Powder Metallurgy Technology, 2023, 41(1): 55-62. DOI: 10.19591/j.cnki.cn11-1974/tf.2022050006
Citation: GAO Chuhan, WU Wenheng, ZHANG Liang. Research status of additive manufacturing technology used for high temperature titanium alloys and titanium matrix composites[J]. Powder Metallurgy Technology, 2023, 41(1): 55-62. DOI: 10.19591/j.cnki.cn11-1974/tf.2022050006

Research status of additive manufacturing technology used for high temperature titanium alloys and titanium matrix composites

  • High temperature titanium alloys and titanium matrix composites (TMCs) have attracted the extensive attention in recent years due to the excellent properties, such as high specific strength, high specific stiffness, high corrosion resistance, and high temperature resistance. The mechanical properties of the titanium matrix composites are often related to the reinforcing phase microstructures. The rapid solidification of additive manufacturing technology can refine particles and improve the mechanical properties of the particle-reinforced titanium matrix composites. The research progress of high temperature titanium alloys and titanium matrix composites was reviewed in this paper. The influence of the reinforcing phase on the mechanical properties of the titanium alloys and titanium matrix composites was analyzed, and the application of additive manufacturing technology used for the titanium-based gradient functional materials was summarized. The additive manufacturing technology can not only improve the hardness and strength of the particle-reinforced titanium matrix composites, but also increase the ductility of the composites, which will become the future development trend.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return