AdvancedSearch
LI Shang-jie, YANG Hua. Effect of cobalt concentration gradient by infiltration sintering on the mechanical properties of polycrystalline diamond compacts[J]. Powder Metallurgy Technology, 2021, 39(6): 526-531. DOI: 10.19591/j.cnki.cn11-1974/tf.2021090014
Citation: LI Shang-jie, YANG Hua. Effect of cobalt concentration gradient by infiltration sintering on the mechanical properties of polycrystalline diamond compacts[J]. Powder Metallurgy Technology, 2021, 39(6): 526-531. DOI: 10.19591/j.cnki.cn11-1974/tf.2021090014

Effect of cobalt concentration gradient by infiltration sintering on the mechanical properties of polycrystalline diamond compacts

More Information
  • Corresponding author:

    YANG Hua, E-mail: yang_hua1984@163.com

  • Received Date: September 14, 2021
  • Available Online: October 07, 2021
  • The infiltration mechanism of cobalt phase in the polycrystalline diamond compacts (PDC) by the ultra-high pressure and high temperature sintering was investigated, and the effect of cobalt concentration gradient on the mechanical properties of PDC was analysed. In the results, the different assembly methods result in the liquid cobalt permeating into the diamond layer, and the obvious concentration gradient appears in the cemented carbide matrix along the interface. For the PDC obtained by the assembling method with the middle of the matrix placed in the center of high temperature region, the mass fraction of cobalt phase reaches 9.42% in the interface of the cemented carbide, much higher than that of 5.58% for the PDC obtained by the conventional assembly method, which inhibits the serious cobalt loss of the cemented carbide near the interface, the cobalt concentration gradient decreases, and the impact resistance of the PDC obtained by this assembly method is much better than that of the conventional assembly method. The cobalt concentration gradient does not affect the PDC wear resistance.
  • [1]
    García J, Ciprés V C, Blomqvist A, et al. Cemented carbide microstructures: a review. Int J Refract Met Hard Mater, 2019, 80: 40 DOI: 10.1016/j.ijrmhm.2018.12.004
    [2]
    Mukhopadhyay A, Basu B. Recent developments on WC-based bulk composites. J Mater Sci, 2011, 46(3): 571 DOI: 10.1007/s10853-010-5046-7
    [3]
    Bobrovinitchii G S, Skury A L D, Filgueora M, et al. Study on WC‒Co-diamond-based composites used in cutters of drill bits. Mater Sci Forum, 2010, 660: 489
    [4]
    Lin Z J, Zhang J Z, Li B S, et al. Superhard diamond/tungsten carbide nanocompostites. Appl Phys Lett, 2011, 98(12): 121914 DOI: 10.1063/1.3570645
    [5]
    贾成厂, 李尚劼. 聚晶金刚石复合片. 金属世界, 2016(3): 18 DOI: 10.3969/j.issn.1000-6826.2016.03.06

    Jia C C, Li S J. Polycrystalline diamond compact. Met World, 2016(3): 18 DOI: 10.3969/j.issn.1000-6826.2016.03.06
    [6]
    Walmsley J C. The microstructure of ultrahard material compacts studied by transmission electron microscopy. Mater Sci Eng A, 1988, 105-106: 549 DOI: 10.1016/0025-5416(88)90742-2
    [7]
    邓福铭, 陈启武, 黄培云. D‒D结合型金刚石聚晶晶界结构及其生长模式. 矿冶工程, 1999, 19(1): 65

    Deng F M, Chen Q W, Huang P Y. The interfacial structure of polycrystallines of D‒D (bonding) diamond and its growth pattern. Min Metall Eng, 1999, 19(1): 65
    [8]
    陈辉. 高温高压对硬质合金衬底冲击韧性的影响. 超硬材料工程, 2013, 25(5): 21 DOI: 10.3969/j.issn.1673-1433.2013.05.008

    Chen H. Influences of high temperatures and pressures on the impact toughness of cemented carbide substrate. Superhard Mater Eng, 2013, 25(5): 21 DOI: 10.3969/j.issn.1673-1433.2013.05.008
    [9]
    王保森, 韩杰才, 张幸红. 非均匀材料力学. 北京: 科学出版社, 2003

    Wang B S, Han J C, Zhang X H. Mechanics of Inhomogeneous Materials. Beijing: China Science Publishing, 2003
    [10]
    贾洪声, 贾晓鹏, 马红安, 等. 生长型金刚石复合片(PDC)的制备和残余应力研究. 超硬材料工程, 2009, 21(1): 1 DOI: 10.3969/j.issn.1673-1433.2009.01.001

    Jia H S, Jia X P, Ma H A, et al. Study on residual stress of grown polycrystalline diamond compact. Superhard Mater Eng, 2009, 21(1): 1 DOI: 10.3969/j.issn.1673-1433.2009.01.001
    [11]
    张忠健, 赵声志, 彭文, 等. 硬质合金疲劳裂纹的萌生与扩展行为. 中国有色金属学报, 2014, 24(12): 3031

    Zhang Z J, Zhao S Z, Peng W, et al. Behavior of fatigue crack initiation and propagation of cemented carbides. Chin J Nonferrous Met, 2014, 24(12): 3031
    [12]
    姜勇, 李中权, 钟益平, 等. WC‒Co硬质合金疲劳断裂机制研究. 粉末冶金技术, 2012, 30(5): 341 DOI: 10.3969/j.issn.1001-3784.2012.05.004

    Jiang Y, Li Z Q, Zhong Y P, et al. On the fatigue and fracture features of WC‒Co cemented carbides. Powder Metall Technol, 2012, 30(5): 341 DOI: 10.3969/j.issn.1001-3784.2012.05.004
    [13]
    彭玉柏. 超高压-高温复合PDC制备过程中硬质合金基体显微组织结构和性能的变化. 材料科学, 2020, 37(5): 345

    Peng Y B. Changes of microstructure and properties of cemented carbide substrate during the preparation of ultra-high pressure and high temperature composite PDC. Cemented Carbide, 2020, 37(5): 345
    [14]
    邓福铭, 宋美娇, 陈为芳. 基于ANSYS的叶腊石高温高压腔体温度场模拟分析. 机械工程师, 2021(2): 22

    Deng F M, Song M J, Chen W F. Simulation analysis on temperature field of pyrophyllite high temperature and high pressure cavity based on ANSYS. Mech Eng, 2021(2): 22
    [15]
    冯吉福, 林峰, 李立惟, 等. 六面顶压机上不同组装结构的温度研究. 超硬材料工程, 2009, 21(3): 21

    Feng J F, Lin F, Li L W, et al. Study on temperature of different assembly structure in cubic hinge apparatus. Superhard Mater Eng, 2009, 21(3): 21
  • Related Articles

    [1]HE Xuemin, WANG Guishan, LI Yinghong, SHI Meijuan. Pitting corrosion behavior of pure copper components in EHV/UHV DC transmission environment[J]. Powder Metallurgy Technology, 2024, 42(1): 91-96. DOI: 10.19591/j.cnki.cn11-1974/tf.2020110003
    [2]Study on microstructure and high-temperature corrosion resistance to melt-salts of LDED High-Cr Ni-base alloy with low melting point[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2024100012
    [3]NI Xiaoqing, ZHANG Liang, WU Wenheng, KONG Decheng, WEN Ying, WANG Li, DONG Chaofang. Effect of electrochemical polishing on surface quality and corrosion resistance of Ti6Al4V crowns fabricated by selective laser melting[J]. Powder Metallurgy Technology, 2023, 41(6): 528-535, 542. DOI: 10.19591/j.cnki.cn11-1974/tf.2021110011
    [4]GUO Yang, HU Li-ming. Effect of graphene oxide on the corrosion resistance and electromagnetic propertiese of FeSiAl alloy powders[J]. Powder Metallurgy Technology, 2021, 39(6): 520-525. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030029
    [5]MIAO Zhen-wang, ZHU Fu-wen, LIU Qi. Study on microstructure and corrosion resistance of CoCrFeNiCuTix high-entropy alloy[J]. Powder Metallurgy Technology, 2020, 38(1): 10-17. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.01.002
    [6]Corrosion Resistance of Ti(C,N)-based Cermet for Surgical Cutting Tools[J]. Powder Metallurgy Technology, 2002, 20(2): 82-85. DOI: 10.3321/j.issn:1001-3784.2002.02.005
    [7]Ye Minghui, Zhao Zhongmin, Du Xinkang, Xin Wentong, Wang Jianjiang. INVESTIGATION ON CORROSION-RESISTANCE OF DOUBLE LINED CERAMIC COMPOSITE PIPES PRODUCED BY GRAVITATIONAL SEPARATION SHS PROCESS[J]. Powder Metallurgy Technology, 2000, 18(2): 106-110.
    [8]Duan Huiping, Wei Yanping, Yin Sheng, Lai Heyi. Investigation on corosion resistance of alloy produced by SHS centrifugal process[J]. Powder Metallurgy Technology, 1998, 16(3): 178-182.
    [9]Huang Jianzhong, Huang Boyun, Lu: Haibo. CHARACTERISTICS AND CORROSION RESISTANT PROPERTY OF HIGH TUNGSTEN HEAVY ALLOY SINTERED AT LOW TEMPERATURE[J]. Powder Metallurgy Technology, 1996, 14(1): 37-43.
    [10]Song Huan, Zhang Song, Zhang Shusheng, Sui Quanming. STUDY ON FLAME SPRAY WELDING BY USING CAST TUNGSTEN CARBIDE ALLOY POWDER PREFORMED COMPACT AND WEAR RESISTANCE[J]. Powder Metallurgy Technology, 1995, 13(4): 259-264.
  • Cited by

    Periodical cited type(1)

    1. 刘杰,李正刚,杨兵. AlCrNbSiTi高熵合金涂层高温水蒸气腐蚀研究. 湖南电力. 2024(02): 29-34 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (412) PDF downloads (40) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return