Citation: | ZHANG Qiang, CAI Yongfeng, LI Xiaojing, LIU Hexiong, ZHANG Nan, ZHOU Wenyuan, LAI Chen, DONG Liran, WANG Jinshu. Research progress of molybdenum alloys prepared by powder metallurgy[J]. Powder Metallurgy Technology, 2023, 41(1): 44-54. DOI: 10.19591/j.cnki.cn11-1974/tf.2022070002 |
Molybdenum and molybdenum alloys prepared by the powder metallurgy method are widely used in metallurgy, machinery, chemical industry, aviation and nuclear industry, attributing to the outstanding mechanical properties at elevated temperatures. The mechanical properties of molybdenum alloys can be improved by solid-solution strengthening, second phase strengthening, fine grain strengthening, and other strengthening methods, broadening the application of molybdenum alloys. The research progress of molybdenum alloys prepared by powder metallurgy was introduced in this paper, including the powder preparation method, pressing process, and bulk sintering process. Moreover, the methods and mechanisms of strengthening and toughening for the molybdenum alloys were discussed in details. Finally, the development direction of molybdenum alloys prepared by powder metallurgy method was prospected to provide some ideas for the design and preparation of the molybdenum alloys.
[1] |
许洁瑜, 杨晓明, 刘萌, 等. 2013年中国钼工业发展状况. 中国钼业, 2014, 38(3): 5
Xu J Y, Yang X M, Liu M, et al. State of China molybdenum industry development in 2013. China Molybd Ind, 2014, 38(3): 5
|
[2] |
蒋丽娟, 李来平, 姚云芳, 等. 2014年钼业年评. 中国钼业, 2015, 39(1): 1 DOI: 10.13384/j.cnki.cmi.1006-2602.2015.01.001
Jiang L J, Li L P, Yao Y F, et al. Annual review of molybdenum in 2014. China Molybd Ind, 2015, 39(1): 1 DOI: 10.13384/j.cnki.cmi.1006-2602.2015.01.001
|
[3] |
王敏, 邓永山. 2015年全球钼市场评述. 中国钼业, 2016, 40(1): 55 DOI: 10.13384/j.cnki.cmi.1006-2602.2016.01.013
Wang M, Deng Y S. Global molybdenum market in 2015. China Molybd Ind, 2016, 40(1): 55 DOI: 10.13384/j.cnki.cmi.1006-2602.2016.01.013
|
[4] |
徐兵. 挤压模具用高性能烧结钼材料组织与性能的研究[学位论文]. 长沙: 中南大学, 2010
Xu B. Study on Microstructure and Properties of High Performance Sintered Molybdenum Materials for Extrusion Dies [Dissertation]. Changsha: Central South University, 2010
|
[5] |
王家鹏, 张洪川, 王建国, 等. 全球钼资源供需形势分析及对策建议. 中国矿业, 2016, 25(增刊 2): 1 DOI: 10.3969/j.issn.1004-4051.2016.z2.001
Wang J P, Zhang H C, Wang J G, et al. Analysis of global molybdenum resource supply and demand structure and some suggestions. China Min Mag, 2016, 25(Suppl 2): 1 DOI: 10.3969/j.issn.1004-4051.2016.z2.001
|
[6] |
成会朝, 范景莲, 刘涛, 等. TZM钼合金制备技术及研究进展. 中国钼业, 2008, 32(6): 40 DOI: 10.3969/j.issn.1006-2602.2008.06.011
Cheng H Z, Fan J L, Liu T, et al. Preparation and research development of TZM molybdenum alloys. China Molybd Ind, 2008, 32(6): 40 DOI: 10.3969/j.issn.1006-2602.2008.06.011
|
[7] |
王东辉, 袁晓波, 李中奎, 等. 钼及钼合金研究与应用进展. 稀有金属快报, 2006, 25(12): 1
Wang D H, Yuan X B, Li Z K, et al. Progress of research and application for Mo metal and its alloys. Rare Met Lett, 2006, 25(12): 1
|
[8] |
贾佐诚, 林冰涛. 提高钼合金低温塑性和高温抗氧化性的新进展. 粉末冶金工业, 2009, 19(1): 49 DOI: 10.3969/j.issn.1006-6543.2009.01.011
Jia Z C, Lin B T. Progress in increasing low temperature ductility and high temperature oxidation resistance of Mo alloys. Powder Metall Ind, 2009, 19(1): 49 DOI: 10.3969/j.issn.1006-6543.2009.01.011
|
[9] |
Zhou T J, Feng W, Zhao H B, et al. Coupling effects of tungsten and molybdenum on microstructure and stress-rupture properties of a nickel-base cast superalloy. Prog Nat Sci Mater Int, 2018, 28(1): 45 DOI: 10.1016/j.pnsc.2017.12.003
|
[10] |
Primg S, Clemens H, Knabl W, et al. Orientation dependent recovery and recrystallization behavior of hot-rolled molybdenum. Int J Refract Met Hard Mater, 2015, 48(3): 179
|
[11] |
An G, Sun J, Sun Y J, et al. Preparation and influencing factors of molybdenum targets and magnetron-sputter-deposited molybdenum thin films. Mater Sci Forum, 2018, 913: 853 DOI: 10.4028/www.scientific.net/MSF.913.853
|
[12] |
薛克敏, 王喆, 刘梅, 等. 纯钼高压扭转过程中微纳尺度的力学性能. 稀有金属材料与工程, 2019, 48(6): 2033
Xue K M, Wang Z, Liu M, et al. Mechanical properties of micro- and nano-scale during high pressure torsion of pure molybdenum. Rare Met Mater Eng, 2019, 48(6): 2033
|
[13] |
陈忠新. 黑龙江省钼矿发展战略研究. 世界有色金属, 2019(9): 63
Chen Z X. Research on development strategy of molybdenum mine in Heilongjiang Province. World Nonferrous Met, 2019(9): 63
|
[14] |
刘辉, 巨建辉, 张军良, 等. 钼合金的强韧化与发展趋势. 中国钼业, 2011, 35(2): 26 DOI: 10.3969/j.issn.1006-2602.2011.02.007
Liu H, Ju J H, Zhang J L, et al. Strengthening and toughening of molybdenum alloy and its development trend. China Molybd Ind, 2011, 35(2): 26 DOI: 10.3969/j.issn.1006-2602.2011.02.007
|
[15] |
居炎鹏, 王爱琴. 钼合金研究现状. 粉末冶金工业, 2015, 25(4): 58 DOI: 10.13228/j.boyuan.issn1006-6543.20150017
Ju Y P, Wang A Q. Current research status of Mo alloys. Powder Metall Ind, 2015, 25(4): 58 DOI: 10.13228/j.boyuan.issn1006-6543.20150017
|
[16] |
刘拼拼, 范景莲, 成会朝, 等. 稀土La对钼合金组织和性能的影响. 粉末冶金技术, 2009, 27(3): 185
Liu P P, Fan J L, Cheng H C, et al. Effect of La on microstructure and mechanical property of Mo-alloy. Powder Metall Technol, 2009, 27(3): 185
|
[17] |
王林, 孙军, 孙院军, 等. 掺杂方式对Mo-La2O3合金组织和力学性能的影响. 稀有金属材料与工程, 2007, 36(10): 1827 DOI: 10.3321/j.issn:1002-185x.2007.10.030
Wang L, Sun J, Sun Y J, at al. Effect of doping methods on microstructure and mechanical properties of Mo-La2O3 alloy. Rare Met Mater Eng, 2007, 36(10): 1827 DOI: 10.3321/j.issn:1002-185x.2007.10.030
|
[18] |
何欢承, 王快社, 胡平, 等. 掺杂稀土元素镧对TZM合金板材再结晶行为的影响. 稀有金属材料与工程, 2015, 44(5): 1297
He H C, Wang K S, Hu P, et al. Effect of lanthanum doping on recrystallization behavior of TZM alloy sheet. Rare Met Mater Eng, 2015, 44(5): 1297
|
[19] |
何斌衡, 杨海林, 阮建明. Y2O3含量对钼合金组织和性能的影响. 粉末冶金材料科学与工程, 2012, 17(2): 234 DOI: 10.3969/j.issn.1673-0224.2012.02.016
He B H, Yang H L, Ruan J M. Effect of Y2O3 content on microstructure and properties of molybdenum alloy. Mater Sci Eng Powder Metall, 2012, 17(2): 234 DOI: 10.3969/j.issn.1673-0224.2012.02.016
|
[20] |
周美玲, 李俊, 左铁镛. 镧钼丝组织结构和性能的研究. 中国有色金属学报, 1994, 4(2): 45 DOI: 10.3321/j.issn:1004-0609.1994.02.013
Zhou M L, Li J, Zuo T Y. Study on the structure and properties of La–Mo wire. Chin J Nonferrous Met, 1994, 4(2): 45 DOI: 10.3321/j.issn:1004-0609.1994.02.013
|
[21] |
Wang J S, Dong L R, Liu W, et al. Progress on RE2O3-Mo/W matrix secondary emitter materials. Sci China Technol Sci, 2017, 60(10): 1439 DOI: 10.1007/s11431-017-9040-7
|
[22] |
王金淑, 周美玲, 左铁镛. 稀土难熔金属阴极材料的研究进展. 中国材料进展, 2009, 28(3): 1
Wang J S, Zhou M L, Zuo T Y. Advance in rare earth cathode doped refractory metal materials. Mater China, 2009, 28(3): 1
|
[23] |
王金淑, 李保真, 周美玲. La‒Mo阴极发射性能及机理研究. 真空电子技术, 2007(6): 5
Wang J S, Li B Z, Zhou M L. A study of the emission property and mechanism of La‒Mo cathode. Vac Electron, 2007(6): 5
|
[24] |
Liu G, Zhang G J, Jiang F, et al. Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility. Nat Mater, 2013, 12(2): 344
|
[25] |
张国君, 刘刚, 孙院军, 等. 氧化镧弥散强化钼合金裂纹扩展的TEM原位观察. 稀有金属材料与工程, 2010, 39(5): 828
Zhang G J, Liu G, Sun Y J, et al. TEM in situ observation of crack propagation in lanthanum oxide dispersion strengthened molybdenum alloy. Rare Met Mater Eng, 2010, 39(5): 828
|
[26] |
Subramanian R, Shankar P, Kavithaa S, et al. Synthesis of nanocrystalline yttria by sol-gel method. Mater Lett, 2001, 48(6): 342 DOI: 10.1016/S0167-577X(00)00324-4
|
[27] |
Dong L R, Li J H, Wang J S, et al. Fabrication and reduction process of dispersive Er2O3 doped Mo super-fine powders comparing with La2O3 doped Mo powders. Powder Technol, 2019, 346: 78 DOI: 10.1016/j.powtec.2019.01.073
|
[28] |
Cheng P M, Yang C, Zhang R, et al. Enhancing the high-temperature creep properties of Mo alloys via nanosized La2O3 particle addition. J Mater Sci Technol, 2022, 130: 53 DOI: 10.1016/j.jmst.2022.04.043
|
[29] |
Dong Z, Ma Z Q, Liu Y C. Accelerated sintering of high-performance oxide dispersion strengthened alloy at low temperature. Acta Mater, 2021, 220: 117309 DOI: 10.1016/j.actamat.2021.117309
|
[30] |
张丹丹, 倪锋, 徐流杰, 等. 掺杂方式对Al2O3/Mo复合材料组织及性能的影响. 稀有金属与硬质合金, 2011, 39(3): 35 DOI: 10.3969/j.issn.1004-0536.2011.03.009
Zhang D D, Ni F, Xu L J, et al. Effects of doping methods on microstructure and properties of A12O3/MO composite material. Rare Met Cement Carb, 2011, 39(3): 35 DOI: 10.3969/j.issn.1004-0536.2011.03.009
|
[31] |
王思清, 倪德忠, 张楠. 高温钼坯生产工艺研究. 稀有金属材料与工程, 1998, 27(4): 46
Wang S Q, Ni D Z, Zhang N, Study on production technology of high temperature molybdenum billet. Rare Met Mater Eng, 1998, 27(4): 46
|
[32] |
李大成, 安耿, 刘高杰, 等. 高能机械化学法制备亚微米MoC粉体. 粉末冶金技术, 2008, 26(3): 205
Li D C, An G, Liu G J, et al. Sub-micron MoC powders prepared by high-energy mechanochemistry method. Powder Metall Technol, 2008, 26(3): 205
|
[33] |
魏世忠, 周玉成, 段素红, 等. 氧化镧含量对钼板组织与性能的影响. 河南科技大学学报(自然科学版), 2013, 34(2): 1
Wei S Z, Zhou Y C, Duan S H, et al. Effect of lanthanum oxide content on microstructure and properties of molybdenum plate. J Henan Univ Sci Technol Nat Sci, 2013, 34(2): 1
|
[34] |
Hu W Q, Sun T, Liu C X, et al. Refined microstructure and enhanced mechanical properties in Mo‒Y2O3 alloys prepared by freeze-drying method and subsequent low temperature sintering. J Mater Sci Technol, 2021, 88: 36 DOI: 10.1016/j.jmst.2021.01.064
|
[35] |
Hu W Q, Wang L, Ma Z Q, et al. Nano Mo‒La‒O particles strengthened Mo alloys fabricated via freeze-drying technology and low temperature sintering. Mater Sci Eng A, 2021, 818: 141448 DOI: 10.1016/j.msea.2021.141448
|
[36] |
操齐高, 赵盘巢, 戎万, 等. 喷雾干燥法制备钼合金微粉的研究. 稀有金属材料与工程, 2020, 49(10): 3627
Cao Q G, Zhao P C, Rong W, et al. Preparation of molybdenum alloy micropowder via spray drying method. Rare Met Mater Eng, 2020, 49(10): 3627
|
[37] |
Xu L J, Wei S Z, Li J W, et al. Preparation, microstructure and properties of molybdenum alloys reinforced by in-situ Al2O3 particles. Int J Refract Met Hard Mater, 2012, 30(1): 208 DOI: 10.1016/j.ijrmhm.2011.08.012
|
[38] |
赵虎. 钼及钼合金烧结技术研究及发展. 粉末冶金技术, 2019, 37(5): 382
Zhao H. Research and development on the sintering techniques of molybdenum and molybdenum alloys. Powder Metall Technol, 2019, 37(5): 382
|
[39] |
董帝, 黄洪涛, 熊宁, 等. 钼及钼合金在核反应堆中的应用. 中国钼业, 2018, 42(4): 6
Dong D, Huang H T, Xiong N, et al. Application of molybdenum and molybdenum alloys in nuclear reactors. China Molybd Ind, 2018, 42(4): 6
|
[40] |
于志涛, 王快社, 胡平, 等. 低氧TZM合金研究进展. 材料导报, 2015, 29(1): 92
Yu Z T, Wang K S, Hu P, et al. Progress of low oxygen TZM molybdenum alloy. Mater Rep, 2015, 29(1): 92
|
[41] |
郑欣, 白润, 王东辉, 等. 航天航空用难熔金属材料的研究进展. 稀有金属材料与工程, 2011, 40(10): 1871
Zheng X, Bai R, Wang D H, et al. Research development of refractory metal materials used in the field of aerospace. Rare Met Mater Eng, 2011, 40(10): 1871
|
[42] |
王承阳, 常洋, 张林海, 等. 氧化锆含量对钼合金组织和性能的影响. 粉末冶金技术, 2021, 39(5): 429
Wang C Y, Chang Y, Zhang H L, et al. Effect of ZrO2 content on microstructure and properties of molybdenum alloys. Powder Metall Technol, 2021, 39(5): 429
|
[43] |
冯鹏发, 付静波, 刘仁智, 等. La元素在钼合金丝中赋存形式的时序性分析. 稀有金属, 2011, 35(4): 486 DOI: 10.3969/j.issn.0258-7076.2011.04.003
Feng P F, Fu J B, Liu R Z, et al. Analysis on time sequence characteristics of occurrence status of lanthanum in Mo alloy wires. Chin J Rare Met, 2011, 35(4): 486 DOI: 10.3969/j.issn.0258-7076.2011.04.003
|
[44] |
杨秦莉, 孟庆乐, 冯鹏发, 等. 稀土Y、Ce对钼合金力学性能的影响. 中国钼业, 2012, 36(5): 51 DOI: 10.3969/j.issn.1006-2602.2012.05.014
Yang Q L, Meng Q L, Feng P F, et al. Effect of rare-earth Y and Ce on the mechanical properties of Mo alloy. China Molybd Ind, 2012, 36(5): 51 DOI: 10.3969/j.issn.1006-2602.2012.05.014
|
[45] |
曹维成. 氧化钇掺杂对合金烧结钼组织及性能的影响. 中国钼业, 2006, 30(3): 40 DOI: 10.3969/j.issn.1006-2602.2006.03.012
Cao W C. Effect of Y2O3 doped on the mechanics performance of molybdenum alloys. China Molybd Ind, 2006, 30(3): 40 DOI: 10.3969/j.issn.1006-2602.2006.03.012
|
[46] |
陈国钦, 朱德志, 占荣, 等. 挤压铸造法制备高致密Mo/Cu及其导热性能. 中国有色金属学报, 2005, 15(11): 1864 DOI: 10.3321/j.issn:1004-0609.2005.11.039
Chen G Q, Zhu D R, Zhan R, et al. Highly dense Mo/Cu composites fabricated by squeeze casting and their thermal conduction properties. Chin J Nonferrous Met, 2005, 15(11): 1864 DOI: 10.3321/j.issn:1004-0609.2005.11.039
|
[47] |
Zhou H L, Feng K Q, Ke S X, et al. Study on the microwave sintering of the novel Mo‒W‒Cu alloys. J Alloys Compd, 2021, 881: 160584 DOI: 10.1016/j.jallcom.2021.160584
|
[48] |
Zhou H L, Feng K Q, Liu Y F. Densification, microstructure, and properties of W‒Mo‒Cu alloys prepared with nano-sized Cu powders via large electric current sintering. Adv Powder Technol, 2022, 33(8): 103703 DOI: 10.1016/j.apt.2022.103703
|
[49] |
卢瑶, 杨栋林. SPS烧结制备高性能超细晶钼合金. 热加工工艺, 2021, 50(10): 40
Lu Y, Yang D L. High-performance ultra-fine grain Mo alloy prepared by SPS sintering. Hot Work Technol, 2021, 50(10): 40
|
[50] |
李增峰, 汤慧萍, 刘海彦, 等. 活化元素Ni对Mo‒Cu合金性能的影响. 粉末冶金材料科学与工程, 2006, 11(3): 185 DOI: 10.3969/j.issn.1673-0224.2006.03.013
Li Z F, Tang H P, Liu H Y, et al. Influence of activating element Ni on performance of Mo‒Cu alloy. Mater Sci Eng Powder Metall, 2006, 11(3): 185 DOI: 10.3969/j.issn.1673-0224.2006.03.013
|
[51] |
卢明园, 范景莲, 成会朝, 等. TiC的添加对Mo‒Ti合金性能与组织结构的影响. 稀有金属材料与工程, 2010, 39(6): 985
Lu M Y, Fang J L, Cheng C H, et al. Influence of TiC addition on properties and microstructure of Mo‒Ti alloy. Rare Met Mater Eng, 2010, 39(6): 985
|
[52] |
Leichtfried G, Schneibel J H, Heilmaier M. Ductility and impact resistance of powder-metallurgical rhenium alloys. Metall Mater Trans A, 2006, 37(10): 2955 DOI: 10.1007/s11661-006-0177-9
|
[53] |
曹维成, 刘静, 任宜霞. 掺杂不同微量元素对钼材性能的影响. 稀有金属快报, 2006, 25(8): 29
Cao W C, Liu J, Ren Y X. Effect of doping different trace elements on properties of molybdenum materials. Rare Met Lett, 2006, 25(8): 29
|
[54] |
范景莲, 钱昭, 成会朝, 等. 微量TiC/ZrC对TZM合金室温及高温性能与组织的影响. 稀有金属材料与工程, 2013, 42(4): 853 DOI: 10.3969/j.issn.1002-185X.2013.04.041
Fan J L, Qian Z, Cheng H Z, et al. Effect of trace TiC/ZrC on property and microstructure of TZM alloy at room and high temperature. Rare Met Mater Eng, 2013, 42(4): 853 DOI: 10.3969/j.issn.1002-185X.2013.04.041
|
[55] |
Lu K, Lu L, Suresh S. Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science, 2009, 324: 349 DOI: 10.1126/science.1159610
|
[56] |
周宇航, 胡平, 常恬, 等. 钼合金强韧化方式及机理研究进展. 功能材料, 2018, 49(1): 1026
Zhou Y H, Hu P, Chang T, et al. Research progress of strengthening and toughening modes and mechanisms of molybdenum alloys. J Funct Mater, 2018, 49(1): 1026
|
[57] |
Chen X, Li B, Wang T, et al. Strengthening mechanisms of Mo‒La2O3 alloys processed by solid-solid doping and vacuum hot-pressing sintering. Vacuum, 2018, 152: 70 DOI: 10.1016/j.vacuum.2018.03.012
|
[1] | REN Xueting, WANG Guangda, ZHOU Wuping, XIONG Ning. Effect of annealing temperature on La2O3 strengthened Mo–Re alloys[J]. Powder Metallurgy Technology, 2025, 43(1): 71-78. DOI: 10.19591/j.cnki.cn11-1974/tf.2023030007 |
[2] | HAN Jiayu, WANG Qiang, LONG Jiayi, ZHAO Weiguo, WANG Li, FENG Rui, JIN Bo, HU Boliang, HU Ping, WANG Kuaishe. Research progress on preparation technology of molybdenum disilicide coating[J]. Powder Metallurgy Technology, 2024, 42(6): 674-684. DOI: 10.19591/j.cnki.cn11-1974/tf.2021050006 |
[3] | Preparation and mechanical properties of refractory metal carbide reinforced tungsten-rhenium alloys[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2024050025 |
[4] | WU Ming-ming, LI Lai-ping, GAO Xuan-qiao, LIANG Jing, XUE Jian-rong, LIN Xiao-hui, ZHANG wen, LI Yan-chao. Research progress of molybdenum-based composites prepared by powder metallurgy technology[J]. Powder Metallurgy Technology, 2021, 39(5): 462-470. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030004 |
[5] | PAN Yi-qing, TIAN Qing-chao, XU Wen-jin. Research progress on the preparation technology of molybdenum alloy piercing plug[J]. Powder Metallurgy Technology, 2021, 39(5): 452-461. DOI: 10.19591/j.cnki.cn11-1974/tf.2020060015 |
[6] | DUAN Lin-lin, FENG Peng-fa, DANG Xiao-ming. Effect of Y2O3–CeO2 two-phase dispersion strengthening on the grain size and tensile properties of Mo alloys[J]. Powder Metallurgy Technology, 2021, 39(3): 223-228. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030006 |
[7] | CHEN Peng-qi, TAI Yun-xiao, CHENG Ji-gui. Study on the sintering properties of Mo–La2O3 nano-powders prepared by solution combustion method[J]. Powder Metallurgy Technology, 2021, 39(3): 203-208. DOI: 10.19591/j.cnki.cn11-1974/tf.2021020009 |
[8] | WANG Hong-ye, CHEN Yu-hong, BAI Zhang-jun, WANG Kang, WU Lan-er. Preparation of Ta-W-Si alloy by powder metallurgy method[J]. Powder Metallurgy Technology, 2018, 36(1): 67-72. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.01.012 |
[9] | Wu Jianjun, Lei Tingquan, Zhang Yun, Jiang Yanfei, Li Guobin. A NEW METHOD TO PREPARE DISPERSIVE STRENGTHENED COPPER MATRIX COMPOSITES[J]. Powder Metallurgy Technology, 1999, 17(3): 195-200. |
[10] | Wang Xiang, Tian Wei, Wu Run, Xu Chenghui, Li Senrong, Wang Aihua. STUDY ON TECHNOLOGICAL PARAMETERS OF SINTERED Fe-Al2O3 COMPOSITE MATERIALS[J]. Powder Metallurgy Technology, 1994, 12(3): 191-196. |
1. |
仵明杰,张信哲,赵建国,赵元超,张怀龙,郭亚杰. 诱导Cu含量对Mo–Cu复合材料微观组织及热性能的影响. 粉末冶金技术. 2025(01): 35-41 .
![]() | |
2. |
谢明明,王波,王虎,崔玉青. 金属钼中氧元素系列标准样品定值过程中量值溯源性探究. 中国钼业. 2024(01): 31-34 .
![]() | |
3. |
刘起航,翁石林,王苗,杨双平,李尚晋. 钼酸铵生产中杂质钾的浸出特征分析研究. 湿法冶金. 2024(03): 242-249 .
![]() | |
4. |
孔歌,蔡小平,冯培忠. 废旧MoSi_2回收产物烧结制备Fe_2(MoO_4)_3的组织形貌和性能. 粉末冶金技术. 2024(03): 255-263 .
![]() | |
5. |
喻冲,刘喆,秦媛,夏季斌. 钼铼合金表面MoSi_2涂层制备及其结构性能. 内蒙古科技大学学报. 2024(02): 200-204 .
![]() | |
6. |
朱兴治,高丽平,管海云,邢晓玉,叶松,黄贞益. 化学镀法制备的Mo@La_2O_3合金烧结体微观结构与力学性能. 金属功能材料. 2024(05): 64-74 .
![]() | |
7. |
王先俊,杨俊宙,王世臣,王智轩,胡卜亮,王力,白润,高选乔,张文,胡平. Mo-14Re合金热变形行为及热加工图. 稀有金属材料与工程. 2024(10): 2891-2896 .
![]() | |
8. |
张生芳,赵斌,谷红涛,尹剑,王紫光,刘宇. Mo元素对13MnNiMoR钢焊缝微观组织及性能影响的研究. 焊接技术. 2024(11): 31-36+145 .
![]() |