AdvancedSearch
LÜ Xing, LUO Cheng, LIANG Guijie. Synthesis of MoO3 nanobelts/reduced graphene oxide by one-step hydrothermal method and the corresponding electrochemical properties[J]. Powder Metallurgy Technology, 2024, 42(4): 388-395, 402. DOI: 10.19591/j.cnki.cn11-1974/tf.2022070004
Citation: LÜ Xing, LUO Cheng, LIANG Guijie. Synthesis of MoO3 nanobelts/reduced graphene oxide by one-step hydrothermal method and the corresponding electrochemical properties[J]. Powder Metallurgy Technology, 2024, 42(4): 388-395, 402. DOI: 10.19591/j.cnki.cn11-1974/tf.2022070004

Synthesis of MoO3 nanobelts/reduced graphene oxide by one-step hydrothermal method and the corresponding electrochemical properties

More Information
  • Corresponding author:

    LÜ Xing, E-mail: lv-xng@foxmail.com

  • Received Date: July 21, 2022
  • Available Online: November 21, 2022
  • To improve the energy storage performance of MoO3 as the supercapacitor electrode materials, the MoO3 nanoribbon/reduced graphene oxide (RGO) composites were synthesized by one-step hydrothermal method. The phase structure, microstructure, and electrochemical properties of the composites were characterized by X-ray diffraction analysis, scanning electron microscopy, Fourier transform infrared spectroscopy, cyclic voltammetry curves, and constant current charge discharge curves. The results show that, the MoO3 nanoribbon/RGO composites are successfully fabricated by the one-step hydrothermal method. Encouragingly, the specific capacitance of the composite materials is increased by 17.5%, compared with that of pure MoO3 as 228 F∙g‒1. Furthermore, the MoO3 nanoribbons are wrapped by RGO or attached to the surface of RGO in the composites, enhancing the electrical conductivity and structure stability, and then improving the electrochemical performance.

  • [1]
    范金辰, 李梁. 三氧化钼纳米带自组装柔性薄膜超级电容器的制备及其性能研究. 上海电力学院学报, 2020, 36(1): 31

    Fan J C, Li L. Preparation and properties of molybdenum trioxide nanoribbons self-assembled flexible film supercapacitors. J Shanghai Univ Electr Power, 2020, 36(1): 31
    [2]
    吕星, 罗成. 酸度系数对水热法合成MoO3物相和形貌的影响. 粉末冶金技术, doi: 10.19591/j.cnki.cn11-1974/tf.2020080016

    Lü X, Luo C. Influence of acidity coefficient on the phase and morphology of MoO3 synthesized by hydrothermal method. Powder Metall Technol, doi: 10.19591/j.cnki.cn11-1974/tf.2020080016
    [3]
    李海, 王世星, 李堂鹏, 等. SnO2/石墨烯纳米复合材料的制备及储锂性能. 电源技术, 2021, 45(9): 1115 DOI: 10.3969/j.issn.1002-087X.2021.09.005

    Li H, Wang S X, Li T P, et al. Preparation and lithium storage properties of SnO2/graphene nanocomposites. Chin J Power Sources, 2021, 45(9): 1115 DOI: 10.3969/j.issn.1002-087X.2021.09.005
    [4]
    丁金姿, 冯爱玲, 李晓东, 等. 功能化石墨烯复合材料及其在生物传感器中的应用. 功能材料, 2020, 51(9): 9056 DOI: 10.3969/j.issn.1001-9731.2020.09.008

    Ding J Z, Feng A L, Li X D, et al. Functional graphene composites and their applications in biosensors. J Funct Mater, 2020, 51(9): 9056 DOI: 10.3969/j.issn.1001-9731.2020.09.008
    [5]
    周登, 黎明. 多孔石墨烯的合成及应用. 高分子学报, 2019, 50(7): 671 DOI: 10.11777/j.issn1000-3304.2019.19014

    Zhou D, Li M. Synthesis and application of porous graphene. Acta Polym Sinica, 2019, 50(7): 671 DOI: 10.11777/j.issn1000-3304.2019.19014
    [6]
    郭阳, 胡黎明. 氧化石墨烯对FeSiAl合金粉末耐蚀和电磁性能的影响. 粉末冶金技术, 2021, 39(6): 520

    Guo Y, Hu L M. Effect of graphene oxide on corrosion resistance and electromagnetic properties of FeSiAl alloy powder. Powder Metall Technol, 2021, 39(6): 520
    [7]
    杨旭宇, 王贤保, 李静, 等. 氧化石墨烯的可控还原及结构表征. 高等学校化学学报, 2012, 33(9): 1902 DOI: 10.3969/j.issn.0251-0790.2012.09.005

    Yang X Y, Wang X B, Li J, et al. Controllable reduction and structural characterization of graphene oxide. Chem J Chin Univ, 2012, 33(9): 1902 DOI: 10.3969/j.issn.0251-0790.2012.09.005
    [8]
    常艳丽, 陈胜, 曹傲能. 压力促进氧化石墨烯水热还原反应的机理. 上海大学学报(自然科学版), 2010, 16(6): 577

    Chang Y L, Chen S, Cao A N. Mechanism of pressure promoting hydrothermal reduction of graphene oxide. J Shanghai Univ Nat Sci, 2010, 16(6): 577
    [9]
    Yang S L, Wang Z, Zou Y N, et al. Remarkably acceleratedRoom-temperature hydrogen sensing of MoO3 nanoribbon/graphene composites by suppressing the nanojunction effects. Sens Actuators B, 2017, 248: 160 DOI: 10.1016/j.snb.2017.03.106
    [10]
    Patil S B, Udayabhanu U, Kishore B, et al. High capacity MoO3/rGO nanocomposite anode for lithium ion batteries: an intuition into the conversion mechanism of MoO3. New J Chem, 2018, 42(23): 18569 DOI: 10.1039/C8NJ03190H
    [11]
    胡阳, 解鑫, 孙春宝, 等. 不同分子结构表面活性剂对低氧化度氧化石墨插层机理的探索. 工程科学学报, 2020, 42(1): 84

    Hu Y, Xie X, Sun C B, et al. Study on the intercalation mechanism of low oxidation degree graphite oxide with different molecular structure surfactants. Chin J Eng, 2020, 42(1): 84
    [12]
    林舜嘉, 孙红娟, 彭同江, 等. 长链烷基季铵盐插层氧化石墨的结构变化. 无机化学学报, 2013, 29(11): 2333

    Lin S J, Sun H J, Peng T J, et al. Structural changes of long chain alkyl quaternary ammonium salt intercalated graphite oxide. Chin J Inorg Chem, 2013, 29(11): 2333
    [13]
    Servati M, Rasuli R. Electrochemical performance of decorated reduced graphene oxide by MoO3 nanoparticles as a counter electrode. Mater Res Exp, 2019, 6(9): 095519 DOI: 10.1088/2053-1591/ab3165
    [14]
    殷楠, 刘婵璐, 张进. MoO3/g-C3N4复合材料的制备及光催化性能. 无机盐工业, 2020, 52(10): 161 DOI: 10.11962/1006-4990.2019-0568

    Yin N, Liu C L, Zhang J. Preparation and photocatalytic properties of composites of MoO3/g-C3N4. Inorg Chem Ind, 2020, 52(10): 161 DOI: 10.11962/1006-4990.2019-0568
    [15]
    Jiang J, Liu J, Peng S, et al. Facile synthesis of α-MoO3 nanobelts and their pseudocapacitive behavior in an aqueous Li2SO4 solution. J Mater Chem A, 2013, 1(7): 2588 DOI: 10.1039/c2ta01120d
    [16]
    Wang S, Dou K, Dong Y, et al. Supercapacitor based on few-layer MoO3 nanosheets prepared by solvothermal method. Int J Nanomanuf, 2016, 12(3-4): 404
  • Related Articles

    [1]GUO Yang, HU Li-ming. Effect of graphene oxide on the corrosion resistance and electromagnetic propertiese of FeSiAl alloy powders[J]. Powder Metallurgy Technology, 2021, 39(6): 520-525. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030029
    [2]LÜ Yi-nan, DONG Gui-xia, KANG Jing-rui, LI Lei, LI Zong-feng, ZHANG Yan-mei. Preparation and electrochemical performances of flower-like Co–Ni double hydroxide electrode materials[J]. Powder Metallurgy Technology, 2018, 36(6): 450-457. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.06.009
    [3]ZHANG Jian-min, WANG Jing, ZHANG Ji, LI Hong-ji. Preparation of graphene oxide composites and study on adsorption properties of copper ions[J]. Powder Metallurgy Technology, 2018, 36(6): 445-449,457. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.06.008
    [4]BAO Xi-fang, XIE Yong-xu, WANG Hui-hui. Improvement on the pickling process of capacitor-grade niobium powder by DOE experimental design method[J]. Powder Metallurgy Technology, 2017, 35(5): 371-377. DOI: 10.19591/j.cnki.cn11-1974/tf.2017.05.009
    [5]Dong Guixia, Lv Yinan, Han Weidan, Zhang Xi, Dong Li. The progress of research on electrode materials of super-capacitors[J]. Powder Metallurgy Technology, 2016, 34(5): 384-389. DOI: 10.3969/j.issn.1001-3784.2016.05.012
    [6]Li Junyi, Wang Dongxin, Sun Benshuang, He Jilin, Guo Shun, Yang Guoqi. Characterization of ultrafine nickel powder for MLCC fabricated by coated precursor thermal decomposition method[J]. Powder Metallurgy Technology, 2013, 31(5): 360-364. DOI: 10.3969/j.issn.1001-3784.2013.05.008
    [7]Hu Minyi, Wang Chongguo, Zhou Kanggen. Study on preparation process of ultrafine copper powders for MLCC electrode[J]. Powder Metallurgy Technology, 2007, 25(6): 447-452.
    [8]Li Zhongquan, Li Yulian. DETERMINATION OF SPECIFIC SURFACE OF POWDERS BY GAS ADSORPTION METHOD[J]. Powder Metallurgy Technology, 1993, 11(4): 289-294.
    [9]Huang Yongshu, Shen Bangru. MEASUREMENT OF SPECIFIC SURFACE AREA OF POWDER BY BLAINE'S PERMEABILITY METHOD[J]. Powder Metallurgy Technology, 1984, 2(3): 41-44.
    [10]Xu Zuheng, Wang Chong, Tong Husong. JB-1 Apparatus for the Determination of Specific Surface Area by Nitrogen Adsorption and the Simplification of Calculation[J]. Powder Metallurgy Technology, 1984, 2(1): 42-49.

Catalog

    Article Metrics

    Article views (239) PDF downloads (34) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return