Citation: | LÜ Xing, LUO Cheng, LIANG Guijie. Synthesis of MoO3 nanobelts/reduced graphene oxide by one-step hydrothermal method and the corresponding electrochemical properties[J]. Powder Metallurgy Technology, 2024, 42(4): 388-395, 402. DOI: 10.19591/j.cnki.cn11-1974/tf.2022070004 |
To improve the energy storage performance of MoO3 as the supercapacitor electrode materials, the MoO3 nanoribbon/reduced graphene oxide (RGO) composites were synthesized by one-step hydrothermal method. The phase structure, microstructure, and electrochemical properties of the composites were characterized by X-ray diffraction analysis, scanning electron microscopy, Fourier transform infrared spectroscopy, cyclic voltammetry curves, and constant current charge discharge curves. The results show that, the MoO3 nanoribbon/RGO composites are successfully fabricated by the one-step hydrothermal method. Encouragingly, the specific capacitance of the composite materials is increased by 17.5%, compared with that of pure MoO3 as 228 F∙g‒1. Furthermore, the MoO3 nanoribbons are wrapped by RGO or attached to the surface of RGO in the composites, enhancing the electrical conductivity and structure stability, and then improving the electrochemical performance.
[1] |
范金辰, 李梁. 三氧化钼纳米带自组装柔性薄膜超级电容器的制备及其性能研究. 上海电力学院学报, 2020, 36(1): 31
Fan J C, Li L. Preparation and properties of molybdenum trioxide nanoribbons self-assembled flexible film supercapacitors. J Shanghai Univ Electr Power, 2020, 36(1): 31
|
[2] |
吕星, 罗成. 酸度系数对水热法合成MoO3物相和形貌的影响. 粉末冶金技术, doi: 10.19591/j.cnki.cn11-1974/tf.2020080016
Lü X, Luo C. Influence of acidity coefficient on the phase and morphology of MoO3 synthesized by hydrothermal method. Powder Metall Technol, doi: 10.19591/j.cnki.cn11-1974/tf.2020080016
|
[3] |
李海, 王世星, 李堂鹏, 等. SnO2/石墨烯纳米复合材料的制备及储锂性能. 电源技术, 2021, 45(9): 1115 DOI: 10.3969/j.issn.1002-087X.2021.09.005
Li H, Wang S X, Li T P, et al. Preparation and lithium storage properties of SnO2/graphene nanocomposites. Chin J Power Sources, 2021, 45(9): 1115 DOI: 10.3969/j.issn.1002-087X.2021.09.005
|
[4] |
丁金姿, 冯爱玲, 李晓东, 等. 功能化石墨烯复合材料及其在生物传感器中的应用. 功能材料, 2020, 51(9): 9056 DOI: 10.3969/j.issn.1001-9731.2020.09.008
Ding J Z, Feng A L, Li X D, et al. Functional graphene composites and their applications in biosensors. J Funct Mater, 2020, 51(9): 9056 DOI: 10.3969/j.issn.1001-9731.2020.09.008
|
[5] |
周登, 黎明. 多孔石墨烯的合成及应用. 高分子学报, 2019, 50(7): 671 DOI: 10.11777/j.issn1000-3304.2019.19014
Zhou D, Li M. Synthesis and application of porous graphene. Acta Polym Sinica, 2019, 50(7): 671 DOI: 10.11777/j.issn1000-3304.2019.19014
|
[6] |
郭阳, 胡黎明. 氧化石墨烯对FeSiAl合金粉末耐蚀和电磁性能的影响. 粉末冶金技术, 2021, 39(6): 520
Guo Y, Hu L M. Effect of graphene oxide on corrosion resistance and electromagnetic properties of FeSiAl alloy powder. Powder Metall Technol, 2021, 39(6): 520
|
[7] |
杨旭宇, 王贤保, 李静, 等. 氧化石墨烯的可控还原及结构表征. 高等学校化学学报, 2012, 33(9): 1902 DOI: 10.3969/j.issn.0251-0790.2012.09.005
Yang X Y, Wang X B, Li J, et al. Controllable reduction and structural characterization of graphene oxide. Chem J Chin Univ, 2012, 33(9): 1902 DOI: 10.3969/j.issn.0251-0790.2012.09.005
|
[8] |
常艳丽, 陈胜, 曹傲能. 压力促进氧化石墨烯水热还原反应的机理. 上海大学学报(自然科学版), 2010, 16(6): 577
Chang Y L, Chen S, Cao A N. Mechanism of pressure promoting hydrothermal reduction of graphene oxide. J Shanghai Univ Nat Sci, 2010, 16(6): 577
|
[9] |
Yang S L, Wang Z, Zou Y N, et al. Remarkably acceleratedRoom-temperature hydrogen sensing of MoO3 nanoribbon/graphene composites by suppressing the nanojunction effects. Sens Actuators B, 2017, 248: 160 DOI: 10.1016/j.snb.2017.03.106
|
[10] |
Patil S B, Udayabhanu U, Kishore B, et al. High capacity MoO3/rGO nanocomposite anode for lithium ion batteries: an intuition into the conversion mechanism of MoO3. New J Chem, 2018, 42(23): 18569 DOI: 10.1039/C8NJ03190H
|
[11] |
胡阳, 解鑫, 孙春宝, 等. 不同分子结构表面活性剂对低氧化度氧化石墨插层机理的探索. 工程科学学报, 2020, 42(1): 84
Hu Y, Xie X, Sun C B, et al. Study on the intercalation mechanism of low oxidation degree graphite oxide with different molecular structure surfactants. Chin J Eng, 2020, 42(1): 84
|
[12] |
林舜嘉, 孙红娟, 彭同江, 等. 长链烷基季铵盐插层氧化石墨的结构变化. 无机化学学报, 2013, 29(11): 2333
Lin S J, Sun H J, Peng T J, et al. Structural changes of long chain alkyl quaternary ammonium salt intercalated graphite oxide. Chin J Inorg Chem, 2013, 29(11): 2333
|
[13] |
Servati M, Rasuli R. Electrochemical performance of decorated reduced graphene oxide by MoO3 nanoparticles as a counter electrode. Mater Res Exp, 2019, 6(9): 095519 DOI: 10.1088/2053-1591/ab3165
|
[14] |
殷楠, 刘婵璐, 张进. MoO3/g-C3N4复合材料的制备及光催化性能. 无机盐工业, 2020, 52(10): 161 DOI: 10.11962/1006-4990.2019-0568
Yin N, Liu C L, Zhang J. Preparation and photocatalytic properties of composites of MoO3/g-C3N4. Inorg Chem Ind, 2020, 52(10): 161 DOI: 10.11962/1006-4990.2019-0568
|
[15] |
Jiang J, Liu J, Peng S, et al. Facile synthesis of α-MoO3 nanobelts and their pseudocapacitive behavior in an aqueous Li2SO4 solution. J Mater Chem A, 2013, 1(7): 2588 DOI: 10.1039/c2ta01120d
|
[16] |
Wang S, Dou K, Dong Y, et al. Supercapacitor based on few-layer MoO3 nanosheets prepared by solvothermal method. Int J Nanomanuf, 2016, 12(3-4): 404
|