AdvancedSearch
ZHANG Jian-min, WANG Jing, ZHANG Ji, LI Hong-ji. Preparation of graphene oxide composites and study on adsorption properties of copper ions[J]. Powder Metallurgy Technology, 2018, 36(6): 445-449,457. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.06.008
Citation: ZHANG Jian-min, WANG Jing, ZHANG Ji, LI Hong-ji. Preparation of graphene oxide composites and study on adsorption properties of copper ions[J]. Powder Metallurgy Technology, 2018, 36(6): 445-449,457. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.06.008

Preparation of graphene oxide composites and study on adsorption properties of copper ions

More Information
  • Corresponding author:

    WANG Jing, E-mail: 445217912@qq.com

  • Received Date: March 20, 2018
  • Available Online: September 03, 2021
  • The composites of graphene oxide-4 A molecular sieve (GO-4 A) were prepared by ultrasonic and magnetic stiring method. The graphene oxide composites were characterized by X-ray diffraction analysis (XRD), Fourier transform-infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). The effects of component ratio (i.e., the mass fractions of graphene oxide and 4 A molecular sieve in GO-4 A composites) on the adsorption of copper ions were studied. The results show that, the influence of component ratio on the phase composition of GO-4 A composites is limited. With the increase in 4 A molecular sieve content, the aggregation degree of graphene oxide is decreased, and the thermal stability of GO-4 A composites is improved. When the component ratio is 1:5, the composite effect achieves the best, the removal of copper ions (Cu2+) is up to 98.42% at the room temperature and pH = 6.
  • [1]
    张建民, 王阿宁, 李红玑, 等. 三种改性Hummers法对氧化石墨结构和亚甲基蓝吸附性能的影响. 粉末冶金技术, 2018, 36(1): 16 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201801003.htm

    Zhang J M, Wang A N, Li H J, et al. Influence on the structure and methylene blue adsorption of graphite oxide prepared by three modified Hummers methods. Powder Metall Technol, 2018, 36(1): 16 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201801003.htm
    [2]
    张国玺. 石墨含量及粒度对铜-镀铜石墨复合材料性能的影响. 粉末冶金技术, 2016, 34(3): 196 DOI: 10.3969/j.issn.1001-3784.2016.03.007

    Zhang G X. Effects of copper-coated graphite content and particle size on properties of the Cu/copper-coated graphite composite. Powder Metall Technol, 2016, 34(3): 196 DOI: 10.3969/j.issn.1001-3784.2016.03.007
    [3]
    Chabot V, Higgins D, Yu A, et al. A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment. Energy Environ Sci, 2014, 7(5): 1564. DOI: 10.1039/c3ee43385d
    [4]
    刘露. 蒙脱土柱撑氧化石墨烯的制备及对水中污染物的吸附性能, 广州: 暨南大学, 2015

    Liu L. Study on the Preparation of Montmorillonite-Pillared Graphene Oxide Composites and the Adsorption of Pollutants in Water[Dissertation]. Guangzhou: Jinan University, 2015
    [5]
    Wang H, Yuan X, Wu Y, et al. Adsorption characteristics and behaviors of graphite oxide for Zn(Ⅱ)removal from aqueous solution. Appl Surf Sci, 2013, 279(8): 432. http://smartsearch.nstl.gov.cn/paper_detail.html?id=a682120f4c43aee4b45698e359dbb952
    [6]
    Perreault F, Fonseca de F A, Elimelech M. Environmental applications of graphene-based nanomaterials. Chem Soc Rev, 2015, 44(16): 5861. DOI: 10.1039/C5CS00021A
    [7]
    肖蓝, 王炜龙, 于水利, 等. 石墨烯及其复合材料在水处理中的应用. 化学进展, 2013, 25(2-3): 419 https://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ2013Z1024.htm

    Xiao L, Wang W L, Yu S L, et al. Graphene-containing composite materials for water treatment. Prog Chem, 2013, 25(2-3): 419 https://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ2013Z1024.htm
    [8]
    Liu F, Chung S, Oh G, et al. Three-dimensional graphene oxide nanostructure for fast and efficient water-soluble dye removal. ACS Appl Mater Interfaces, 2012, 4(2): 922. DOI: 10.1021/am201590z
    [9]
    Reddy D A, Ma R, Choi M Y, et al. Reduced graphene oxide wrapped ZnS-Ag2S ternary composites synthesized via hydrothermal method: Applications in photocatalyst degradation of organic pollutants. Appl Surf Sci, 2015, 324: 725. DOI: 10.1016/j.apsusc.2014.11.026
    [10]
    Zhao G, Ren X, Gao X, et al. Removal of Pb(Ⅱ)ions from aqueous solutions on few-layeredgraphene oxide nanosheets. J Dalton Transactions, 2011, 40(41): 10945. DOI: 10.1039/c1dt11005e
    [11]
    桂花, 谭伟, 李彬, 等. 4A沸石分子筛处理中低浓度氨氮废水. 环境工程学报, 2014, 8(5): 1944 https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201405042.htm

    Gui H, Tan W, Li B, et al. Removal ammonia-nitrogen from medium-low concentration wastewater by 4A zeolite molecular sieve. Chin J Environ Eng, 2014, 8(5): 1944 https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201405042.htm
    [12]
    党瑞. 天然及改性沸石去除水中磷的实验研究, 兰州: 兰州交通大学, 2015

    Dang R. Experimental Study on Removing Phosphorus by Natural and Modified Zeolite[Dissertation]. Lanzhou: Lanzhou Jiaotong University, 2015
    [13]
    李妍. 分子筛分子筛离子交换及其吸附性能研究, 太原: 太原理工大学, 2009

    Li Y. Ion Exchange and Adsorption Performance of Zeolite[Dissertation]. Taiyuan: Taiyuan University of Technology, 2009
    [14]
    敖翔, 刘红, 汪茜, 等. 4A分子-凹凸棒土颗粒对水中Cd(Ⅱ)的吸附. 水处理技术, 2017(9): 62 https://www.cnki.com.cn/Article/CJFDTOTAL-SCLJ201709013.htm

    Ao X, Liu H, Wang Q, et al. Adsorption of Cd(Ⅱ)in aqueous solution by granular 4A molecular sieve/attapulgite. Technol Water Treat, 2017(9): 62 https://www.cnki.com.cn/Article/CJFDTOTAL-SCLJ201709013.htm
    [15]
    苏东方. 金属有机骨架(MIL-53)/4A沸石复合材料的制备及其吸附性能的研究, 北京: 北京交通大学, 2017

    Su D F. Synthesis and Adsorption Properties of Metal-Organic Frameworks(MIL-53)/4A Zeolite Material[Dissertation]. Beijing: Beijing Jiaotong University, 2017
    [16]
    彭黎琼, 谢金花, 郭超, 等. 石墨烯的表征方法. 功能材料, 2013, 44(21): 3055 DOI: 10.3969/j.issn.1001-9731.2013.21.001

    Peng L Q, Xie J H, Guo C, et al. Review of characterization methods of graphene. J Funct Mater, 2013, 44(21): 3055 DOI: 10.3969/j.issn.1001-9731.2013.21.001

Catalog

    Article Metrics

    Article views (222) PDF downloads (16) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return