AdvancedSearch
SU Xuwen, HE Zhi, YAN Shuxin, DONG Longlong, SUN Guodong. Effect of nano-ZrC powders on microstructure and properties of 90W−7Ni−3Fe alloys[J]. Powder Metallurgy Technology, 2025, 43(1): 86-93. DOI: 10.19591/j.cnki.cn11-1974/tf.2023040009
Citation: SU Xuwen, HE Zhi, YAN Shuxin, DONG Longlong, SUN Guodong. Effect of nano-ZrC powders on microstructure and properties of 90W−7Ni−3Fe alloys[J]. Powder Metallurgy Technology, 2025, 43(1): 86-93. DOI: 10.19591/j.cnki.cn11-1974/tf.2023040009

Effect of nano-ZrC powders on microstructure and properties of 90W−7Ni−3Fe alloys

More Information
  • Corresponding author:

    SUN Guodong, E-mail: guodongsun@qq.com

  • Received Date: May 25, 2023
  • Available Online: July 27, 2023
  • To effectively inhibit the growth of tungsten grains during the liquid phase sintering, the ZrC dispersion-strengthened heavy tungsten alloys (WHAs) were prepared by liquid phase sintering at 1500 ℃. The effects of ZrC mass fraction (1% and 2%) on the microstructure and properties of WHAs were analyzed. The results show that, with the increase of ZrC mass fraction, the relative density and W−W contiguity of WHAs decrease, and the tungsten grains are refined to a certain extent. When the ZrC mass fraction is 1%, the strength-ductility matching effect of WHAs is the best, the relative density reaches 98.4%, the tungsten grain size is 22.17 μm, and the yield strength and compressive strength (40% deformation) reach 791 MPa and 2179 MPa, respectively, which are increased by 8.35% and 38.70%, compared with WHAs without ZrC (730 MPa and 1570 MPa).

  • [1]
    Miao S, Xie Z M, Zeng L F, et al. The mechanical properties and thermal stability of a nanostructured carbide dispersion strengthened W−0.5 wt.% Ta−0.01 wt.% C alloy. Fusion Eng Des, 2017, 125: 490
    [2]
    Xu L, Xiao F, Wei S, et al. Development of tungsten heavy alloy reinforced by cubic zirconia through liquid-liquid doping and mechanical alloying methods. Int J Refract Met Hard Mater, 2019, 78: 1 DOI: 10.1016/j.ijrmhm.2018.08.009
    [3]
    German R M. Lower sintering temperature tungsten alloys for space research. Int J Refract Met Hard Mater, 2015, 53: 74 DOI: 10.1016/j.ijrmhm.2015.04.020
    [4]
    Chuvildeev V N, Nokhrin A V, Boldin M S, et al. Impact of mechanical activation on sintering kinetics and mechanical properties of ultrafine-grained 95W−Ni−Fe tungsten heavy alloys. J Alloys Compd, 2019, 773: 666 DOI: 10.1016/j.jallcom.2018.09.176
    [5]
    Islam S, Qu X, Askari S, et al. Effect of microstructural parameters on the properties of W−Ni−Fe alloys. Rare Met, 2007, 26(3): 200 DOI: 10.1016/S1001-0521(07)60201-0
    [6]
    Deng N, Li J, Wang Y, et al. Microstructure and mechanical properties of liquid–phase sintered W@NiFe composite powders. Int J Refract Met Hard Mater, 2021, 95: 105447 DOI: 10.1016/j.ijrmhm.2020.105447
    [7]
    Li Z B, Zhang H, Chen B, et al. Microstructure and mechanical properties of Al2O3 dispersed fine-grained medium heavy alloys with a superior combination of strength and ductility. Mater Sci Eng A, 2021, 817: 141376 DOI: 10.1016/j.msea.2021.141376
    [8]
    向道平, 丁雷. 合金元素或氧化物强化W−Ni−Fe高密度合金的研究进展. 中国有色金属学报, 2013, 23(6): 1549 DOI: 10.1016/S1003-6326(13)62629-1

    Xiang D P, Ding L. Research progress of alloying elements or oxides strengthened W−Ni−Fe heavy alloys. Chin J Nonferrous Met, 2013, 23(6): 1549 DOI: 10.1016/S1003-6326(13)62629-1
    [9]
    Li Z B, Wang Y, Zhang H, et al. Effect of ZrB2 addition on microstructure evolution and mechanical properties of 93 wt.% tungsten heavy alloys. Mater Sci Eng A, 2021, 825: 141870
    [10]
    Li P F, Fan J L, Han Y, et al. Microstructure evolution and properties of tungsten reinforced by additions of ZrC. Rare Met Mater Eng, 2018, 47(6): 1695 DOI: 10.1016/S1875-5372(18)30152-8
    [11]
    Li P F, Fan J L, Han Y, et al. Toughening mechanisms and interfacial bonding of W−ZrC composites. Rare Met Mater Eng, 2019, 48(3): 751
    [12]
    杨文涛, 薛冰, 代永富, 等. 球磨时间对钨粉粒度分布及形貌影响. 粉末冶金技术, 2021, 39(5): 423 DOI: 10.19591/j.cnki.cn11-1974/tf.2020020010

    Yang W T, Xue B, Dai Y F, et al. Effect of milling time on the particle size distribution and morphology of tungsten powders. Powder Metall Technol, 2021, 39(5): 423 DOI: 10.19591/j.cnki.cn11-1974/tf.2020020010
    [13]
    马运柱, 黄伯云, 范景莲, 等. 纳米级W−Ni−Fe复合粉末的制备. 粉末冶金技术, 2005, 23(1): 40 DOI: 10.3321/j.issn:1001-3784.2005.01.008

    Ma Y Z, Huang B Y, Fan J L, et al. Preparation of nano-sized W−Ni−Fe composite powder. Powder Metall Technol, 2005, 23(1): 40 DOI: 10.3321/j.issn:1001-3784.2005.01.008
    [14]
    罗崇玲, 王建新, 孙改云, 等. 粗颗粒钨粉对90W−Ni−Fe钨合金烧结变形与组织性能的影响. 粉末冶金技术, 2016, 34(3): 199 DOI: 10.3969/j.issn.1001-3784.2016.03.008

    Luo C L, Wang J X, Sun G Y, et al. Influence of coarse tungsten powder on sintering warpage, structure and properties of 90W−Ni−Fe tungsten heavy alloy. Powder Metall Technol, 2016, 34(3): 199 DOI: 10.3969/j.issn.1001-3784.2016.03.008
    [15]
    Lee J S, Kim T H, Yu J H, et al. In-situ alloying on synthesis of nanosized Ni−Fe powder. Nanostruct Mater, 1997, 9(1-8): 153 DOI: 10.1016/S0965-9773(97)00041-X
    [16]
    Hu K, Li X, Ai X, et al. Fabrication, characterization, and mechanical properties of 93W–4.9Ni–2.1Fe/95W–2.8Ni–1.2Fe–1Al2O3 heavy alloy composites. Mater Sci Eng A, 2015, 636: 452
    [17]
    Li Z B, Zhang H, Zhang G H, et al. Fabrication and characterization of tungsten heavy alloys with high W content by powder metallurgy. Metall Mater Trans A, 2022, 53(3): 1085 DOI: 10.1007/s11661-021-06579-w
    [18]
    Zhang X, Zhu S, Zhang B, et al. Effect of Y2O3 addition on the microstructure, wear resistance, and corrosion behavior of W−4.9Ni−2.1Fe heavy alloy. J Mater Eng Perform, 2019, 28(8): 4801
    [19]
    Lee K H, Cha S I, Ryu H J, et al. Effect of oxide dispersoids addition on mechanical properties of tungsten heavy alloy fabricated by mechanical alloying process. Mater Sci Eng A, 2007, 452-453: 55 DOI: 10.1016/j.msea.2006.10.155
    [20]
    Hu K, Li X, Guan M, et al. Dynamic deformation behavior of 93W−5.6Ni−1.4Fe heavy alloy prepared by spark plasma sintering. J Refract Met Hard Mater, 2016, 58: 117
    [21]
    Gong X, Fan J L, Ding F. Tensile mechanical properties and fracture behavior of tungsten heavy alloys at 25–1100 °C. Mater Sci Eng A, 2015, 646: 315 DOI: 10.1016/j.msea.2015.08.079
  • Related Articles

    [1]QIN Shiyu, SONG Weihao, LIU Hongxia, MA Wen, BAI Yu. ZrC/Mo‒Si metal silicides composite nano-powders prepared by direcrt molten salt electrochemistry[J]. Powder Metallurgy Technology, 2025, 43(2): 163-169, 179. DOI: 10.19591/j.cnki.cn11-1974/tf.2023100002
    [2]HAN Guoqiang, WANG Weiwei, LI Xiaoyan. Effect of powder sintering on microstructure and mechanical properties of magnesium‒scandium alloys[J]. Powder Metallurgy Technology, 2023, 41(6): 548-553. DOI: 10.19591/j.cnki.cn11-1974/tf.2020070005
    [3]WU Kaixia, ZHA Wusheng, CHEN Xiuli, WAN Haiyi, AN Xuguang. Effect of ball milling time on characteristics of ZrC‒FeCrAl powders and mechanical properties of alloys[J]. Powder Metallurgy Technology, 2023, 41(4): 338-344. DOI: 10.19591/j.cnki.cn11-1974/tf.2022110014
    [4]WEI Zi-chen, ZHANG Lin, QIN Ming-li, LI Xing-yu, QUE Zhong-you, QU Xuan-hui. Effect of powder size on microstructure and mechanical properties of rhenium[J]. Powder Metallurgy Technology, 2021, 39(3): 196-202. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030014
    [5]GUO Shi-bo, YI Zheng-yi, WANG Nan-chuan, SUN Jing, LIAO Jing-bing. Study on sintering properties of nano Mo–40Cu composite powders prepared by hydrothermal method and hydrogen reduction method[J]. Powder Metallurgy Technology, 2020, 38(5): 377-382. DOI: 10.19591/j.cnki.cn11-1974/tf.2020050010
    [6]TAN Ping, LI Zeng-feng, GE Yuan, ZHAO Shao-yang, WANG Li-qing, SHEN Lei, YIN Jing-ou, WEN Jia-yi. Effect of powder sizes on the mechanical properties of porous titanium sheets prepared by rolling and sintering process[J]. Powder Metallurgy Technology, 2020, 38(1): 30-35. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.01.005
    [7]HE Qin-qiu, LI Pu-ming, YUAN Yong, ZHANG De-jin, LIU Zeng-lin, LI Song-lin. Microstructure and mechanical properties of ceramic particle-reinforced powder metallurgy Fe-2Cu-0.6C composites[J]. Powder Metallurgy Technology, 2019, 37(1): 11-17, 22. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.01.002
    [8]Luo ChongLing, Wang JianXin, Sun GaiYun, Zheng Jun. Influence of coarse tungsten powder on sintering warpage,structure and properties of 90W-Ni-Fe tungsten heavy alloy[J]. Powder Metallurgy Technology, 2016, 34(3): 199-204. DOI: 10.3969/j.issn.1001-3784.2016.03.008
    [9]Song Mousheng, Ran Maowu. Investigation of formation mechanism of ZrC powder fabricated by self-propagating reaction[J]. Powder Metallurgy Technology, 2011, 29(3): 177-182.
    [10]Liu Wenjun, Zheng Yong, Xiong Weihao. Effects of addition of nano-structured powders on microstructure and mechanical properties of Ti(C,N)-based cermets[J]. Powder Metallurgy Technology, 2005, 23(5): 334-338. DOI: 10.3321/j.issn:1001-3784.2005.05.004
  • Cited by

    Periodical cited type(1)

    1. 彭研硕,李建忠,吴厅兰,金伟洋,周鸿波,刘孝莲. 晶界添加PrNd和Pr_(75)Al_(15)Cu_(10)对细晶无重稀土烧结钕铁硼磁体磁性能和力学性能的影响. 金属功能材料. 2024(06): 184-194 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (521) PDF downloads (39) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return