AdvancedSearch
GUO Shi-bo, YI Zheng-yi, WANG Nan-chuan, SUN Jing, LIAO Jing-bing. Study on sintering properties of nano Mo–40Cu composite powders prepared by hydrothermal method and hydrogen reduction method[J]. Powder Metallurgy Technology, 2020, 38(5): 377-382. DOI: 10.19591/j.cnki.cn11-1974/tf.2020050010
Citation: GUO Shi-bo, YI Zheng-yi, WANG Nan-chuan, SUN Jing, LIAO Jing-bing. Study on sintering properties of nano Mo–40Cu composite powders prepared by hydrothermal method and hydrogen reduction method[J]. Powder Metallurgy Technology, 2020, 38(5): 377-382. DOI: 10.19591/j.cnki.cn11-1974/tf.2020050010

Study on sintering properties of nano Mo–40Cu composite powders prepared by hydrothermal method and hydrogen reduction method

More Information
  • The Mo-40Cu composite powders were prepared by the hydrothermal and hydrogen reduction method, the effects of sintering process in the hydrogen atmosphere on the microstructure and mechanical properties of the Mo-40Cu composites were studied by X-ray diffraction (XRD), scanning electron microscope (SEM), and transmission electron microscope (TEM). The results show that, the optimum process parameters for the powder preparation are 400 ℃ for the hydrothermal temperature and 700 ℃ for the hydrogen reduction temperature, obtaining the homogeneous Mo-40Cu composite powders with the powder particle size of 70~90 nm. The optimum sintering process in the hydrogen atmosphere is sintering at 1300 ℃ for 2 h, the relative density, bending strength, hardness, electrical conductivity, and thermal conductivity are 98.1%, 1060 MPa, HRA 51, 20.8 MS·m-1, and 191.7 W·m-1·K-1, respectively, and the thermal expansion coefficient is 10.8×10-6 K-1 at 500~700 ℃. The microstructure of Mo-40Cu alloy is homogenous with the grain size of about 3~4 μm.
  • [1]
    Wang D, Wang Y J, Deng W Z, et al. Microstructure and mechanical properties of Mo–ZrC–Cu composites synthesized by reactive melt infiltration of Zr–Cu melt into porous Mo2C preforms at 1300 ℃. Mater Chem Phys, 2018, 212: 51 DOI: 10.1016/j.matchemphys.2018.01.033
    [2]
    孙靖. 纳米Mo–40Cu复合粉末的制备及其烧结性能研究[学位论文]. 湘潭: 湖南科技大学, 2016

    Sun J. Production and Sintering Property of Superfine Mo–40Cu Composite Powder [Dissertation]. Xiangtan: Hunan University of Science and Technology, 2016
    [3]
    王德志, 张宇晴, 段柏华. 微波快速熔渗制备钼铜复合材料. 有色金属科学与工程, 2018, 9(3): 11 https://www.cnki.com.cn/Article/CJFDTOTAL-JXYS201803003.htm

    Wang D Z, Zhang Y Q, Duan B H. Preparation of Mo–Cu composite by rapid microwave infiltration. Nonferrous Met Sci Eng, 2018, 9(3): 11 https://www.cnki.com.cn/Article/CJFDTOTAL-JXYS201803003.htm
    [4]
    Benavides P A, Benjamín S, Palma R H. Liquid phase sintering of mechanically alloyed Mo–Cu powders. Mater Sci Eng A, 2017, 701: 237 DOI: 10.1016/j.msea.2017.06.090
    [5]
    Ji X P, Cao W C, Bu C Y, et al. A new route for preparing Mo–10wt%Cu composite compacts. Int J Refract Met Hard Mater, 2019, 81: 196 DOI: 10.1016/j.ijrmhm.2019.03.008
    [6]
    Wang D Z, Yin B Z, Sun A K, et al. Fabrication of Mo–Cu composite powders by heterogeneous precipitation and the sintering properties of the composite compacts. J Alloys Compd, 2016, 674: 347 DOI: 10.1016/j.jallcom.2016.03.027
    [7]
    Li B Q, Jin H C, Ding F, et al. Fabrication of homogeneous Mo–Cu composites using spherical molybdenum powders prepared by thermal plasma spheroidization process. Int J Refract Met Hard Mat, 2018, 73: 13 DOI: 10.1016/j.ijrmhm.2018.01.022
    [8]
    Yao J T, Li C J, Li Y, et al. Relationships between the properties and microstructure of Mo–Cu composites prepared by infiltrating copper into flame-sprayed porous Mo skeleton. Mater Des, 2015, 88: 774 DOI: 10.1016/j.matdes.2015.09.062
    [9]
    王德志, 李然, 段柏华. 压力对热压烧结制备Mo–20Cu复合材料的影响. 稀有金属材料与工程, 2017, 46(7): 1998 https://www.cnki.com.cn/Article/CJFDTOTAL-COSE201707043.htm

    Wang D Z, Li R, Duan B H. Effects of pressure on preparation of Mo–20Cu alloy by hot-press sintering. Rare Met Mater Eng, 2017, 46(7): 1998 https://www.cnki.com.cn/Article/CJFDTOTAL-COSE201707043.htm
    [10]
    Liu Z W, Li P, Wan Q, et al. Low-temperature combustion synthesis of hexagonal WO3·0.33H2O@C as anode material for lithium ion batteries. J Alloys Compds, 2017, 701: 215 DOI: 10.1016/j.jallcom.2017.01.089
    [11]
    Zhao Y Y, Jiang N, Zhang X, et al. One-step salt-assisted solution combustion synthesis of Ni-based composites for use as supercapacitor electrodes. J Alloys Compds, 2018, 765: 396 DOI: 10.1016/j.jallcom.2018.06.166
    [12]
    Johnson J L. Activated liquid phase sintering of W–Cu and Mo–Cu. Int J Refract Met Hard Mater, 2015, 53: 80 DOI: 10.1016/j.ijrmhm.2015.04.030
    [13]
    Souli I, Terziyska V L, Zechner J, et al. Microstructure and physical properties of sputter-deposited Cu–Mo thin films. Thin Solid Films, 2018, 653: 301 DOI: 10.1016/j.tsf.2018.03.039
    [14]
    Li P, Liu Z W, Cui L Q, et al. Tungsten carbide synthesized by low-temperature combustion as gas diffusion electrode catalyst. Int J Hydrogen Energy, 2014, 39: 10911 DOI: 10.1016/j.ijhydene.2014.04.173
    [15]
    孙靖, 郭世柏. 超细Mo–40Cu合金的制备及其性能. 材料热处理学报, 2016, 37(8): 7 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201608002.htm

    Sun J, Guo S B. Fabrication and property of ultrafine Mo–40Cu alloy. Trans Mater Heat Treat, 2016, 37(8): 7 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201608002.htm
    [16]
    Sun H L, Huang X X, He M J, et al. Preparation and controllability of Cu particles on annealed Mo–Cu alloy films. Mater Lett, 2019, 254: 175 DOI: 10.1016/j.matlet.2019.07.044
    [17]
    Souli I, Terziyska V L, Zechner J, et al. Microstructure and physical properties of sputter-deposited Cu–Mo thin films. Thin Solid Films, 2018, 653: 301 DOI: 10.1016/j.tsf.2018.03.039
    [18]
    Cao J, Liu J X, Liu X W, et al. Effect of the distribution state of transition phase on the mechanical properties and failure mechanisms of the W–Mo–Cu alloy by tuning elements content. J Alloys Compd, 2020, 827: 154333 DOI: 10.1016/j.jallcom.2020.154333
  • Related Articles

    [1]LI Yue, ZHAO Dingguo, SU Xinlei, LIU Yan, WANG Shuhuan. Viscosity model of CoCrFeMnNi high entropy alloys[J]. Powder Metallurgy Technology, 2024, 42(4): 411-417. DOI: 10.19591/j.cnki.cn11-1974/tf.2022080008
    [2]LIU Ganhua, TANG Naifu, WANG Qi. Accurate modeling of equal-distance spiral bevel gear and the trial production by metal powder injection molding process[J]. Powder Metallurgy Technology, 2024, 42(2): 207-214. DOI: 10.19591/j.cnki.cn11-1974/tf.2021100012
    [3]SUN Shi-min, HUANG Shang-yu, ZHOU Meng-cheng, LEI Yu, WANG Bin. Modified Drucker-Prager Cap model of Ti-6Al-4V powders for cold die compaction[J]. Powder Metallurgy Technology, 2018, 36(4): 261-269. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.04.004
    [4]Dai Yu, Huang Baiyun, Liu Yong, Yang Jiangao. Mathematical model and analysis of atomization process with lineal instability[J]. Powder Metallurgy Technology, 2009, 27(5): 331-335.
    [5]Research on Sintering Model of ZAO Ceramics[J]. Powder Metallurgy Technology, 2002, 20(5): 267-270. DOI: 10.3321/j.issn:1001-3784.2002.05.002
    [6]Sun Jianfei, Shen Jun, Li Zhenyu, Jia Jun, Li Qingchun. HEAT TRANSFER AND SOLIDIFICATION BEHAVIOR OF SUPERALLOY DROPLETS DURING SPRAY FORMING[J]. Powder Metallurgy Technology, 2000, 18(2): 92-97.
    [7]Cheng Yuanfang, Guo Shiju, Lai Heyi. COUPLING MODEL OF MULTIPLE SINTERING MECHANISMS FOR THE INITIAL STAGE SINTERING[J]. Powder Metallurgy Technology, 1999, 17(4): 257-263.
    [8]Cheng Yuanfang, Guo Shiju, Lai Heyi. THEORETICAL MODELLING PROGRESS——1.THE COMPARISON OF THE UNIT MODEL FOR THE FIRST STAGE OF GRAVITY SINTERING[J]. Powder Metallurgy Technology, 1999, 17(3): 216-221.
    [9]Yang Liushuan, Pang Lijun, Liu Yongzhang, Yang Gencang, Zhou Yaohe. PHYSICAL MODEL AND MATHEMATICAL ANALYSES ON THERMAL PROCESS OF SPRAY-DEPOSITED ZA27 ALLOY DROPLETS[J]. Powder Metallurgy Technology, 1995, 13(3): 163-169.
    [10]Zhang Ji, Li Shikui. MATHEMATICAL ANALYSIS ON TRANSVERSE RUPTURE STRENGTH OF YG15 HARDMETALS[J]. Powder Metallurgy Technology, 1993, 11(1): 15-18.
  • Cited by

    Periodical cited type(1)

    1. 崔雷,麻洪秋,赵刚,孟令兵,关立东,冯雪峰. 改进型组合雾化工艺制备球形FeSiCr粉末. 粉末冶金技术. 2024(05): 481-488 . 本站查看

    Other cited types(0)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return