Citation: | ZHOU Kexin, YANG Zhanxin, WANG Junbo, MU Minxuan, CHEN Jian, QI Guochao. Optimization on hydrogenation-dehydrogenation preparation of titanium powders by SHS[J]. Powder Metallurgy Technology, 2025, 43(1): 109-115. DOI: 10.19591/j.cnki.cn11-1974/tf.2023050002 |
To optimize the hydrogenation-dehydrogenation process for preparing titanium powders by self-propagating high-temperature synthesis (SHS) method, the traditional steel ball milling process was replaced by the new closed-loop air current grinding process, and the traditional evacuation process for dehydrogenation process was replaced by the decompression-ignition process. The microstructure, phase component, chemical composition, and particle size distribution of the samples prepared by the optimization process were studied. In the results, the hydrogen mass fraction in the titanium hydride samples is high (4.662%) after SHS hydrogenation, and the particle size distribution of the TiH2 particles is uniform with the range of 40~250 μm after the closed-loop air flow grinding process. The new dehydrogenation process is beneficial to control the N, O, and C content in the titanium powder samples.
[1] |
Zhang C L, He X, Liu C, et al. Record high Tc element superconductivity achieved in titanium. Nat Commun, 2022, 13: 5411 DOI: 10.1038/s41467-022-33077-3
|
[2] |
Zhang D Y, Qiu D, Gibson M A, et al. Additive manufacturing of ultrafine-grained high-strength titanium alloys. Nature, 2019, 576: 91 DOI: 10.1038/s41586-019-1783-1
|
[3] |
杨宇承, 潘宇, 路新, 等. 粉末冶金法制备颗粒增强钛基复合材料的研究进展. 粉末冶金技术, 2020, 38(2): 150
Yang Y C, Pan Y, Lu X, et al. Research progress on particle-reinforced titanium matrix composites prepared by powder metallurgy method. Powder Metall Technol, 2020, 38(2): 150
|
[4] |
Fang Z Z, Froes F H, Zhang Y. Extractive Metallurgy of Titanium. Amsterdam: Elsevier, 2020
|
[5] |
Sun P, Fang Z Z, Xia Y, et al. A novel method for production of spherical Ti−6Al−4V powder for additive manufacturing. Powder Technol, 2016, 301: 331 DOI: 10.1016/j.powtec.2016.06.022
|
[6] |
Goso X, Kale A. Production of titanium metal powder by the HDH process. J Southern Afr Inst Min Metall, 2011, 111(3): 203
|
[7] |
Kim Y I, Kim D K, Kim I, et al. Enhancing spreadability of hydrogenation-dehydrogenation titanium powder and novel method to characterize powder spreadability for powder bed fusion additive manufacturing. Materi Des, 2022, 226: 111247
|
[8] |
黄刚, 曹小华, 龙兴贵. 钛-氢体系的物理化学性质. 材料导报, 2006, 20(10): 128 DOI: 10.3321/j.issn:1005-023X.2006.10.032
Huang G, Cao X H, Long X G. Physical and chemical properties of titanium-hydrogen system. Mater Rev, 2006, 20(10): 128 DOI: 10.3321/j.issn:1005-023X.2006.10.032
|
[9] |
McCracken C, Barbis D. Production of fine titanium powders via the hydride-dehydride (HDH) process. Powder Inject Mould Int, 2008, 2(2): 55
|
[10] |
Song Y L, Dou Z B, Zhang T A, et al. Research progress on the extractive metallurgy of titanium and its alloys. Miner Process Extr Metall Rev, 2022, 42: 535
|
[11] |
Sytschev A E, Kovalev D Y, Busurin S M, et al. Influence of synthesis conditions on the structure and phase formation during the SHS hydration of titanium. Russ J Non-Ferrous Met, 2015, 56(1): 86 DOI: 10.3103/S1067821215010150
|
[12] |
Hayazi N F, Wang Y, Chan S L I. Unlocking the metastable phases and mechanisms in the dehydrogenation process of titanium hydride. Mater Charact, 2020, 161: 110128 DOI: 10.1016/j.matchar.2020.110128
|
[13] |
Ma Q, Francis H F. Titanium Powder Metallurgy. Amsterdam: Elsevier, 2015
|
[14] |
李星宇, 章林, 秦明礼, 等. 气流磨处理对烧结钨粉微观组织和力学性能的影响. 粉末冶金技术, 2021, 39(3): 251
Li X Y, Zhang L, Qin M L, et al. Effect of jet milling processing on microstructure and mechanical properties of the sintered tungsten powders. Powder Metall Technol, 2021, 39(3): 251
|
[15] |
戴坤良. TiH2粉体脱氢特性和压制与烧结行为研究[学位论文]. 长沙: 湖南大学, 2009
Dai K L. Dehydrogening Character, Compactibility and Sintering Performance of TiH2 Powder [Dissertation]. Changsha: Hunan University, 2009
|
[16] |
Chen C Q, Li S X, Lu K. The defor mation behavioes of gamma hydrides in titanium under cyclic straining. Acta Mater, 2003, 51(4): 931 DOI: 10.1016/S1359-6454(02)00495-0
|
[17] |
Rasooli A, Divandari M, Shahverdi H R, et al. Kinetics and mechanism of titanium hydride powder and aluminum melt reaction. Int J Miner Metall Mater, 2012, 19(2): 165 DOI: 10.1007/s12613-012-0533-2
|
[18] |
罗顺忠, 杨本福, 龙兴贵. 中子发生器用氚靶的研究进展. 原子能科学技术, 2002, 36(4-5): 290 DOI: 10.7538/yzk.2002.36.z1.0290
Luo S Z, Yang B F, Long X G. Research progress on tritide target in neutron generator. At Energy Sci Technol, 2002, 36(4-5): 290 DOI: 10.7538/yzk.2002.36.z1.0290
|
[19] |
Matijasevic L B, Banhart J, Fiechter S, et al. Modification of titanium hydride for improved aluminium foam manufacture. Acta Mater, 2006, 54(7): 1887 DOI: 10.1016/j.actamat.2005.12.012
|
[20] |
李光明, 甘礼华, 陈龙武, 等. 氢化钛的制备及其分解. 应用化学, 1998, 15(1): 77 DOI: 10.3724/j.issn.1000-0518.1998.1.77
Li G M, Gan L H, Chen L W, et al. The formation and decomposition of titanium hydride. Chin J Appl Chem, 1998, 15(1): 77 DOI: 10.3724/j.issn.1000-0518.1998.1.77
|
[21] |
李大武, 李继荣, 李展超, 等. 升温速率对TiH2热分解反应动力学的影响. 材料与冶金学报, 2009, 8(3): 175
Li D W, Li J R, Li Z C, et al. Effect of heating rate on thermolysis reaction kinetics of TiH2. J Mater Metall, 2009, 8(3): 175
|
[22] |
Wang H T, Lefler M, Fang Z Z, et al. Titanium and titanium alloy via sintering of TiH2. Key Eng Mater, 2010, 436: 157 DOI: 10.4028/www.scientific.net/KEM.436.157
|
[23] |
Savvakin D H, Humenyak M M, Matviichuk M V, et al. Role of hydrogen in the process of sintering of titanium powders. Mater Sci, 2012, 47: 651 DOI: 10.1007/s11003-012-9440-y
|
[24] |
Bhosle V, Baburaj E G, Miranova M, et al. Dehydrogenation of TiH2. Mater Sic Eng A, 2003, 365(1): 190
|
[25] |
洪艳, 曲涛, 沈化森, 等. 氢化脱氢法制备钛粉工艺研究. 稀有金属, 2007, 31(3): 311
Hong Y, Qu T, Shen H S, et al. Titanium production through hydrogenation and dehydrogenation process. Chin J Rare Met, 2007, 31(3): 311
|
[26] |
Bhosle V, Baburaj E G, Miranova M, et al. Dehydrogenation of anocrystalline TiH2 and consequent consolidation to form dense Ti. Metall Mater Trans A, 2003, 34: 2793 DOI: 10.1007/s11661-003-0180-3
|
[27] |
黄利军, 虞炳西, 高树浚. 钛吸氢和放氢动力学. 金属功能材料, 1998, 5(3): 124
Huang L J, Yu B X, Gao S J. Kinetics of hydrogen absorption and desorption by titanium. Metall Funct Mater, 1998, 5(3): 124
|
[28] |
Chen T, Yang C, Liu Z, et al. Revealing dehydrogenation effect and resultant densification mechanism during pressureless sintering of TiH2 powder. J Alloys Compd, 2021, 873: 159792 DOI: 10.1016/j.jallcom.2021.159792
|
[29] |
Kennedy A R, Lopez V H. The decomposition behavior of as-received and oxidized TiH2 foaming-agent powder. Mater Sci Eng A, 2003, 357(1): 258
|
[30] |
Stepura G, Rosenband V, Gany A. A model for the decomposition of titanium hydride and magnesium hydride. J Alloys Compd, 2012, 513: 159 DOI: 10.1016/j.jallcom.2011.10.012
|
[1] | LIU Guang-xu, WANG Xiao-feng, YANG Jie, ZOU Jin-wen. Effect of heat treatment on microstructure evolution and mechanical properties of P/M Ni-based superalloy at diffusion bonding interface[J]. Powder Metallurgy Technology, 2022, 40(3): 218-225. DOI: 10.19591/j.cnki.cn11–1974/tf.2021040006 |
[2] | XIAO Ping-an, ZHAO Ji-kang, GU Jing-hong, LÜ Rong, GU Si-min, CHEN Yu-xiang, CHEN Huan. Fabrication technology upgrade of TiC-based high manganese steel bonded cemented carbide[J]. Powder Metallurgy Technology, 2021, 39(6): 545-548. DOI: 10.19591/j.cnki.cn11-1974/tf.2020090010 |
[3] | YANG Jie, LIU Guang-xu, ZHANG Jing, WANG Wen-ying, WANG Xiao-feng, ZOU Jin-wen. Microstructure and failure mechanism of FGH96 solid-state diffusion bonding interface[J]. Powder Metallurgy Technology, 2021, 39(4): 311-318. DOI: 10.19591/j.cnki.cn11-1974/tf.2021040005 |
[4] | Su Yixiang, Lei Yu, Xu Zhuang, Zhao Xiaoli, Guo Haifeng. Study on microstructure and properties of containing tellurium nickel-based alloy powder coating by non-vacuum fusion[J]. Powder Metallurgy Technology, 2013, 31(5): 323-327. DOI: 10.3969/j.issn.1001-3784.2013.05.001 |
[5] | Fan Anping, Xiao Ping'an, Li Chenkun, Xuan Cuihua, Qu Xuanhui. Research situation of TiC-based steel bonded carbide[J]. Powder Metallurgy Technology, 2013, 31(4): 298-303. DOI: 10.3969/j.issn.1001-3784.2013.04.011 |
[6] | Gong Wei, Li Hua, Zhu Yong. Effect of vanadium content on the microstructure and mechanical properties of (Ti,V)C35CrMo steel bonded carbide[J]. Powder Metallurgy Technology, 2009, 27(5): 336-340. |
[7] | Liu Junbo, Wang Limei, Liu Junhai, Huang Jihua. Influence of bonding phase on microstructure of steel bonded Himet synthesized in situ[J]. Powder Metallurgy Technology, 2007, 25(4): 266-270. |
[8] | Xiong Yongjun, Li Xibin, Liu Rutie, Zhao Fuan. Influences of high energy ball milling on microstructure and properties of a new steel bonded titanium carbide[J]. Powder Metallurgy Technology, 2006, 24(3): 187-191. DOI: 10.3321/j.issn:1001-3784.2006.03.006 |
[9] | Liu Junhai, Huang Jihua, Song Guixiang, Zhang Jiangang. A study on in situ reactive synthesis of TiC/heat resistant steel-steel bonded carbides[J]. Powder Metallurgy Technology, 2005, 23(3): 199-203. DOI: 10.3321/j.issn:1001-3784.2005.03.009 |
[10] | Wu Qiang, Hu Zhenhua, Xiao Jianzhong, Cui Kun. TEM RESEARCH ON MICROSTRUCTURES OF TiC-50Nb STEEL-BONDED CEMENTED CARBIDE[J]. Powder Metallurgy Technology, 1993, 11(3): 202-207. |