AdvancedSearch
ZHANG Ming, TIAN Tian, WANG Yixing, LIU Jiantao. Study on grain growth behavior of new Ni-based powder metallurgy superalloys[J]. Powder Metallurgy Technology, 2023, 41(5): 427-433. DOI: 10.19591/j.cnki.cn11-1974/tf.2023060001
Citation: ZHANG Ming, TIAN Tian, WANG Yixing, LIU Jiantao. Study on grain growth behavior of new Ni-based powder metallurgy superalloys[J]. Powder Metallurgy Technology, 2023, 41(5): 427-433. DOI: 10.19591/j.cnki.cn11-1974/tf.2023060001

Study on grain growth behavior of new Ni-based powder metallurgy superalloys

More Information
  • Corresponding author:

    ZHANG Ming, E-mail: aaabbr@126.com

  • Received Date: May 21, 2023
  • Accepted Date: May 21, 2023
  • Available Online: August 01, 2023
  • The grain growth behavior of the fourth generation powder metallurgy (PM) superalloys was studied. The results indicate that the grain growth range is small when the heat treatment temperature is below the γ′ solution temperature, which is similar to the initial microstructure (as-forged, 3~4 μm). However, the grain size greatly increases to 30~40 μm when the heat treatment temperature exceeds the γ′ solution temperature, and there is little difference in grain size at the several temperatures over the γ′ solution temperature. The grain size increases significantly at the initial stage of heat treatment, and no longer changes after a certain holding time. The influence of temperature and time on grain size is related to the pinning effect of γ′ on grain boundary migration. A new model is established by modifying the parameters such as the activation energy for boundary migration (Q), the time exponent (n), and the generalized mobility constant (A0) based on the traditional grain growth model. The determination coefficient (R2) and the mean-square error (MSE) between the predicted and the experimental values are 0.9997 and 0.12 μm, respectively, showing the high prediction accuracy, and the various characteristics of the grain growth curves can also be predicted accurately.

  • [1]
    Li X Y, Zhang H P, Bai J M, et al. The evolution of γ′ precipitates and hardness response of a novel PM Ni-based superalloy during thermal exposure. J Alloys Compd, 2023, 942: 168757 DOI: 10.1016/j.jallcom.2023.168757
    [2]
    Gabb T P, Kantzos P T, Telesman J, et al. Fatigue resistance of the grain size transition zone in a dual microstructure superalloy disk. Int J Fatigue, 2011, 33(3): 414 DOI: 10.1016/j.ijfatigue.2010.09.022
    [3]
    Thébaud L, Villechaise P, Crozet C, et al. Is there an optimal grain size for creep resistance in Ni-based disk superalloys? Mater Sci Eng A, 2018, 716: 274
    [4]
    Zhang X Y, Chen Y, Cao L Y, et al. Microstructures and tensile properties of a grain-size gradient nickel-based superalloy. J Alloys Compd, 2023, 960: 170344 DOI: 10.1016/j.jallcom.2023.170344
    [5]
    Mourer D P, Williams J L. Dual heat treat process development for advanced disk applications // Superalloys 2004: Proceedings of the 10th International Symposium on Superalloys. Champion, 2004: 401
    [6]
    Hyzak J M, Macintyre C A, Sundberg D V. Dual structure turbine disks via partial immersion heat treatment // Superalloys 1988: Proceedings of the Tenth International Symposium on Superalloys. Champion, 1988: 121
    [7]
    Mitchell R J, Lemsky J A, Ramanathan R, et al. Process development and microstructure and mechanical property evaluation of a dual microstructure heat treated advanced nickel disc alloy // Superalloys 2008: Proceedings of the 11th International Symposium on Superalloys. Champion, 2008: 347
    [8]
    Hu H, Rath B B. On the time exponent in isothermal grain growth. Metall Mater Trans B, 1970, 1(11): 3181 DOI: 10.1007/BF03038435
    [9]
    Beck P A, Holzworth M L, Hu H. Instantaneous rates of grain growth. Phys Rev, 1948, 73(5): 526 DOI: 10.1103/PhysRev.73.526
    [10]
    Holmes E L, Winegard W C. Grain growth in zone-refined tin. Acta Metall, 1959, 7(6): 411 DOI: 10.1016/0001-6160(59)90051-3
    [11]
    宋晓艳, 刘国权, 谷南驹. 第二相粒子尺寸对基体晶粒长大影响的仿真研究. 金属学报, 1999, 35(6): 565

    Song X Y, Liu G Q, Gu N J. Computer simulation of the influence of the second-phase particle size on grain growth. Acta Metall Sin, 1999, 35(6): 565
    [12]
    Song K, Aindow M. Grain growth and particle pinning in a model Ni-based superalloy. Mater Sci Eng A, 2008, 479: 365 DOI: 10.1016/j.msea.2007.09.055
    [13]
    Andersen I, Grong Ø, Ryum N. Analytical modelling of grain growth in metals and alloys in the presence of growing and dissolving precipitates-II. Abnormal grain growth. Acta Metall Mater, 1995, 43(7): 2689
    [14]
    付立铭, 单爱党, 王巍. 低碳Nb微合金钢中Nb溶质拖曳和析出相NbC钉扎对再结晶晶粒长大的影响. 金属学报, 2010, 46(7): 832 DOI: 10.3724/SP.J.1037.2010.00832

    Fu L M, Shan A D, Wang W. Effect of Nb solute drag and NbC precipitate pinning on the recrystallization grain growth in low carbon Nb-microalloyed steel. Acta Metall Sin, 2010, 46(7): 832 DOI: 10.3724/SP.J.1037.2010.00832
    [15]
    Collins D M, Conduit B D, Stone H J, et al. Grain growth behaviour during near-γ′ solvus thermal exposures in a polycrystalline nickel-base superalloy. Acta Mater, 2013, 61(9): 3378 DOI: 10.1016/j.actamat.2013.02.028
    [16]
    Collins D M, Stone H J. A modelling approach to yield strength optimisation in a nickel-base superalloy. Int J Plast, 2014, 54: 96 DOI: 10.1016/j.ijplas.2013.08.009
    [17]
    Exner H E. Analysis of grain-and particle-size distributions in metallic materials. Int Metall Rev, 1972, 17(1): 25 DOI: 10.1179/095066072790137729
    [18]
    Zhang B J, Zhao G P, Zhang W Y, et al. Deformation mechanisms and microstructural evolution of γ+γ′ duplex aggregates generated during thermomechanical processing of nickel-base superalloys // Proceedings of the 13th International Symposium on Superalloys. Champion, 2016: 487
    [19]
    张明, 刘国权, 胡本芙, 等. 新型镍基粉末高温合金热挤压工艺有限元模拟与实验验证. 粉末冶金技术, 2018, 36(3): 223

    Zhang M, Liu G Q, Hu B F, et al. Finite element simulation and experimental verification on hot extrusion of a novel nickel-base P/M superalloy. Powder Metall Technol, 2018, 36(3): 223
    [20]
    张明, 刘国权, 胡本芙. 镍基粉末高温合金热加工变形过程中显微组织不稳定性对热塑性的影响. 金属学报, 2017, 53(11): 1469 DOI: 10.11900/0412.1961.2017.00172

    Zhang M, Liu G Q, Hu B F. Effect of microstructure instability on hot plasticity during thermomechanical processing in PM nickel-based superalloy. Acta Metall Sin, 2017, 53(11): 1469 DOI: 10.11900/0412.1961.2017.00172
    [21]
    张明, 刘国权, 王浩, 等. 高性能镍基粉末高温合金固溶连续冷却γ′相多阶段析出行为和尺寸粗化动力学研究. 稀有金属材料与工程, 2019, 48(10): 3258

    Zhang M, Liu G Q, Wang H, et al. Study on the kinetics and reverse coarsening effect of multi generations precipitation during continuous cooling in high performance Ni-base PM superalloy. Rare Met Mater Eng, 2019, 48(10): 3258
    [22]
    李昌, 陈蕾蕾, 瞿宗宏, 等. 镍基粉末高温合金FGH4096中γ'相完全溶解温度的测定. 金属热处理, 2021, 46(11): 174

    Li C, Chen L L, Qu Z H, et al. Measurement of complete dissolution temperature of γ' phase in nickel-based P/M superalloy FGH4096. Heat Treat Met, 2021, 46(11): 174
    [23]
    Alvarado K, Janeiro I, Florez S, et al. Dissolution of the primary γ′ precipitates and grain growth during solution treatment of three nickel base superalloys. Metals, 2021, 11(12): 1921 DOI: 10.3390/met11121921
    [24]
    Qiao S C, Wang Y, Lv L X, et al. Normal and abnormal grain growth in a FGH96 superalloy during thermomechanical treatment. J Mater Res Technol, 2021, 15: 7033 DOI: 10.1016/j.jmrt.2021.11.142
    [25]
    Xu S, Dickson J I, Koul A K. Grain growth and carbide precipitation in superalloy, UDIMET 520. Metall Mater Trans A, 1998, 29: 2687 DOI: 10.1007/s11661-998-0309-5
    [26]
    Zhang Y Y, Li J K, Wu Y, et al. Microstructure evolution of a nickel-based powder metallurgy superalloy under different solution treatment temperatures. Adv Eng Mater, 2022, 24(9): 2200004 DOI: 10.1002/adem.202200004
    [27]
    Semiatin S L, McClary K E, Rollett A D, et al. Plastic flow and microstructure evolution during thermomechanical processing of a PM nickel-base superalloy. Metall Mater Trans A, 2013, 44: 2778 DOI: 10.1007/s11661-013-1675-1
    [28]
    周德强, 刘雄军, 吴渊, 等. 新型奥氏体耐热不锈钢再结晶行为及其对力学性能的影响. 金属学报, 2014, 50(10): 1217 DOI: 10.11900/0412.1961.2014.00312

    Zhou D Q, Liu X J, Wu Y, et al. Recrystallization behavior and its influences on mechanical properties of an alumina-forming austenitic stainless steels. Acta Metall Sin, 2014, 50(10): 1217 DOI: 10.11900/0412.1961.2014.00312
    [29]
    郭士文, 张玉锁, 童开峰, 等. 镍基高温合金长期时效后γ′相长大动力学. 东北大学学报(自然科学版), 2003, 24(6): 576 DOI: 10.3321/j.issn:1005-3026.2003.06.017

    Guo S W, Zhang Y S, Tong K F, et al. Kinetic study on the growth of precipitated γ′ phase during long time aging in GH4199 superalloy. J Northeastern Univ Nat Sci, 2003, 24(6): 576 DOI: 10.3321/j.issn:1005-3026.2003.06.017
    [30]
    Burachynsky V, Cahoon J R. A theory for solute impurity diffusion, which considers engel-brewer valences, balancing the Fermi energy levels of solvent and solute, and differences in zero point energy. Metall Mater Trans A, 1997, 28(3): 563 DOI: 10.1007/s11661-997-0043-4
    [31]
    Tian G F, Jia C C, Liu J T, et al. Experimental and simulation on the grain growth of P/M nickel-base superalloy during the heat treatment process. Mater Des, 2009, 30(3): 433 DOI: 10.1016/j.matdes.2008.06.007
  • Related Articles

    [1]HE Xuemin, WANG Guishan, LI Yinghong, SHI Meijuan. Pitting corrosion behavior of pure copper components in EHV/UHV DC transmission environment[J]. Powder Metallurgy Technology, 2024, 42(1): 91-96. DOI: 10.19591/j.cnki.cn11-1974/tf.2020110003
    [2]Study on microstructure and high-temperature corrosion resistance to melt-salts of LDED High-Cr Ni-base alloy with low melting point[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2024100012
    [3]NI Xiaoqing, ZHANG Liang, WU Wenheng, KONG Decheng, WEN Ying, WANG Li, DONG Chaofang. Effect of electrochemical polishing on surface quality and corrosion resistance of Ti6Al4V crowns fabricated by selective laser melting[J]. Powder Metallurgy Technology, 2023, 41(6): 528-535, 542. DOI: 10.19591/j.cnki.cn11-1974/tf.2021110011
    [4]GUO Yang, HU Li-ming. Effect of graphene oxide on the corrosion resistance and electromagnetic propertiese of FeSiAl alloy powders[J]. Powder Metallurgy Technology, 2021, 39(6): 520-525. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030029
    [5]MIAO Zhen-wang, ZHU Fu-wen, LIU Qi. Study on microstructure and corrosion resistance of CoCrFeNiCuTix high-entropy alloy[J]. Powder Metallurgy Technology, 2020, 38(1): 10-17. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.01.002
    [6]Corrosion Resistance of Ti(C,N)-based Cermet for Surgical Cutting Tools[J]. Powder Metallurgy Technology, 2002, 20(2): 82-85. DOI: 10.3321/j.issn:1001-3784.2002.02.005
    [7]Ye Minghui, Zhao Zhongmin, Du Xinkang, Xin Wentong, Wang Jianjiang. INVESTIGATION ON CORROSION-RESISTANCE OF DOUBLE LINED CERAMIC COMPOSITE PIPES PRODUCED BY GRAVITATIONAL SEPARATION SHS PROCESS[J]. Powder Metallurgy Technology, 2000, 18(2): 106-110.
    [8]Duan Huiping, Wei Yanping, Yin Sheng, Lai Heyi. Investigation on corosion resistance of alloy produced by SHS centrifugal process[J]. Powder Metallurgy Technology, 1998, 16(3): 178-182.
    [9]Huang Jianzhong, Huang Boyun, Lu: Haibo. CHARACTERISTICS AND CORROSION RESISTANT PROPERTY OF HIGH TUNGSTEN HEAVY ALLOY SINTERED AT LOW TEMPERATURE[J]. Powder Metallurgy Technology, 1996, 14(1): 37-43.
    [10]Song Huan, Zhang Song, Zhang Shusheng, Sui Quanming. STUDY ON FLAME SPRAY WELDING BY USING CAST TUNGSTEN CARBIDE ALLOY POWDER PREFORMED COMPACT AND WEAR RESISTANCE[J]. Powder Metallurgy Technology, 1995, 13(4): 259-264.
  • Cited by

    Periodical cited type(1)

    1. 刘杰,李正刚,杨兵. AlCrNbSiTi高熵合金涂层高温水蒸气腐蚀研究. 湖南电力. 2024(02): 29-34 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (1015) PDF downloads (89) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return