Citation: | ZOU Heng, SUN Yi, CHEN Mengxiong, XIONG Huiwen, ZHANG Lei, ZHOU Kechao. Research progress on metal injection molding of aluminum alloys[J]. Powder Metallurgy Technology, 2025, 43(1): 20-34. DOI: 10.19591/j.cnki.cn11-1974/tf.2023080002 |
Aluminum and aluminum alloys have the characteristics as low density, corrosion resistance, high specific strength, and good thermal conductivity, which are widely used in transportation, electronic products, medical, and chemical industries as the lightweight and functional components. Metal powder injection (MIM) can achieve the low-cost and efficient manufacturing of the fine and complex aluminum alloy products, exhibiting the satisfactory mechanical properties, uniform microstructure, and high dimensional accuracy. Development of Al-MIM technology plays an important role in promoting the industrialization of injection molded Al alloy parts and accelerating the application in electronic information products, medical devices, and new energy vehicles. The development status of metal powder injection molding for aluminum alloys was introduced in this paper, the effects of feeding requirements, binder composition design, degreasing method, atmosphere sintering system, and action mechanism on the sintering densification were reviewed, and the problems to be solved and the development direction were prospected.
[1] |
关杰仁, 陈超, 丁红瑜, 等. 激光选区熔化成形Al–Mg–Sc–Zr高强铝合金研究进展. 中国有色金属学报, 2022, 32(5): 1224
Guan J R, Chen C, Ding H Y, et al. Research development of selective laser melted Al–Mg–Sc–Zr high strength aluminum alloy. Chin J Nonferrous Met, 2022, 32(5): 1224
|
[2] |
Sidambe A T, Figueroa I A, Hamilton H G C, et al. Metal injection moulding of CP–Ti components for biomedical applications. J Mater Process Technol, 2012, 212(7): 1591 DOI: 10.1016/j.jmatprotec.2012.03.001
|
[3] |
Hosseinpour M, Abdoos H. Manufacturing of nanocomposites via powder injection molding: focusing on thermal management systems—A review. J Manuf Sci Eng, 2021, 143(4): 040801 DOI: 10.1115/1.4048454
|
[4] |
Cao P, Muhammad D H. Feedstock Technology for Reactive Metal Injection Molding. 1st Ed. San Diego: Elsevier, 2020
|
[5] |
Gerling R, Schimansky F P, Wegmann G. Metal injection moulding using intermetallic γ-TiAl alloy powder. Adv Eng Mater, 2001, 3(6): 387 DOI: 10.1002/1527-2648(200106)3:6<387::AID-ADEM387>3.0.CO;2-6
|
[6] |
Dehghan-Manshadi A, Yu P, Dargusch M, et al. Metal injection moulding of surgical tools, biomaterials and medical devices: A review. Powder Technol, 2020, 364: 189 DOI: 10.1016/j.powtec.2020.01.073
|
[7] |
Liu C, Lu H F, Qin M L, et al. Effect of powders on aluminum nitride components fabricated by PIM. Powder Technol, 2023, 420: 118409 DOI: 10.1016/j.powtec.2023.118409
|
[8] |
孙伟成, 张淑荣, 张学萍, 等. 铝合金粉末注射成形工艺研究. 沈阳理工大学学报, 1995, 14(4): 46
Sun W C, Zhang S R, Zhang X P, et al. Research on injection molding of aluminum alloy powder. J Shenyang Ligong Univ, 1995, 14(4): 46
|
[9] |
Acar L, Gülsoy H Ö. Sintering parameters and mechanical properties of injection moulded aluminium powder. Powder Metall, 2011, 54(3): 427 DOI: 10.1179/003258910X12740974839558
|
[10] |
杜智渊, 吴茂, 邱婷婷, 等. Al–Cu–Mg–Si系铝合金的注射成形. 中国有色金属学报, 2019, 29(11): 2471
Du Z Y, Wu M, Qiu T T, et al. Metal injection molding of Al–Cu–Mg–Si alloy. Chin J Nonferrous Met, 2019, 29(11): 2471
|
[11] |
Katou K, Mstsumoto A. Application of metal injection moulding of Al powder. J Jpn Soc Powder Powder Metall, 2016, 63(7): 468 DOI: 10.2497/jjspm.63.468
|
[12] |
Li G, Qu W Y, Luo M, et al. Semi-solid processing of aluminum and magnesium alloys: Status, opportunity, and challenge in China. Trans Nonferrous Met Soc China, 2021, 31(11): 3255 DOI: 10.1016/S1003-6326(21)65729-1
|
[13] |
崔珊, 张恩耀, 胡可, 等. 粉末粒形对Ti–6Al–4V注射成形喂料显微形貌及流变性能的影响. 粉末冶金工业, 2022, 32(4): 31
Cui S, Zhang E Y, Hu K, et al. Effect of powder shape on microscopic morphology and rheological properties of Ti–6Al–4V injection molding feedstock. Powder Metall Ind, 2022, 32(4): 31
|
[14] |
Thavanayagam G, Swan J E. Optimizing hydride-dehydride Ti–6Al–4V feedstock composition for titanium powder injection moulding. Powder Technol, 2019, 355: 688 DOI: 10.1016/j.powtec.2019.07.091
|
[15] |
Saidin H, Azuddin M. Preparation of aluminum feedstock for green part specimen using metal injection molding. Appl Mech Mater, 2013, 465-466: 1250 DOI: 10.4028/www.scientific.net/AMM.465-466.1250
|
[16] |
Dayam S, Tandon P, Priyadarshi S. Development of paste extrusion-based metal additive manufacturing process. Rapid Prototyp J, 2022, 28(10): 1920 DOI: 10.1108/RPJ-05-2021-0118
|
[17] |
Ni J Q, Yu M H, Han K Q. Debinding and sintering of an injection-moulded hypereutectic Al–Si alloy. Materials, 2018, 11(5): 807 DOI: 10.3390/ma11050807
|
[18] |
Liu Z Y, Sercombe T B, Schaffer G B. Metal injection moulding of aluminium alloy 6061 with tin. Powder Metall, 2008, 51(1): 78 DOI: 10.1179/174329008X284859
|
[19] |
Liu Z Y, Kent D, Schaffer G B. Powder injection molding of Al-(steel and magnet) hybrid components. Metall Mater Trans A, 2009, 40(12): 2785 DOI: 10.1007/s11661-009-0012-1
|
[20] |
Liu Z Y, Kent D, Schaffer G B. Powder injection moulding of an Al–AlN metal matrix composite. Mater Sci Eng A, 2009, 513: 352
|
[21] |
Gerling R, Aust E, Limberg W, et al. Metal injection moulding of gamma titanium aluminide alloy powder. Mater Sci Eng A, 2006, 423(1-2): 262 DOI: 10.1016/j.msea.2006.02.002
|
[22] |
Obasi G, Ferri O, Ebel T, et al. Influence of processing parameters on mechanical properties of Ti–6Al–4V alloy fabricated by MIM. Mater Sci Eng A, 2010, 527(16-17): 3929 DOI: 10.1016/j.msea.2010.02.070
|
[23] |
Liu C C, Lu X, Yang F, et al. Metal injection moulding of high Nb-containing TiAl alloy and its oxidation behaviour at 900 ℃. Metals, 2018, 8(3): 163 DOI: 10.3390/met8030163
|
[24] |
Herbert D, Christian G, Branislav Z, et al. Method for Producing Shaped bodies from Aluminium Alloys: United States Patent, EP2552630B1. 2011-3-31
|
[25] |
杨晓霞. Ti6Al4V合金粉末注射成形工艺研究[学位论文]. 济南: 山东大学, 2021
Yang X X. Research on the Technology of Powder Injection Molding of Ti6Al4V Alloy [Dissertation]. Jinan: Shandong University, 2021
|
[26] |
王昆昆. Ti–6Al–4V+xY2O3合金放电等离子与注射成形制备及其性能研究[学位论文]. 南昌: 南昌航空大学, 2020
Wang K K. Study on the Properties of Ti–6Al–4V+xY2O3 Alloy Prepared by Spark Plasma Sintering and Metal Injection Molding [Dissertation]. Nanchang: Nanchang Hangkong University, 2020
|
[27] |
刘春林, 张钱鹏, 邬均文, 等. Ti–6Al–4V金属粉末注射成形喂料的制备与性能表征. 热加工工艺, 2020, 49(6): 98
Liu C L, Zhang Q P, Wu J W, et al. Preparation and property characterization of Ti–6Al–4V feedstock by metal powder injection molding. Hot Work Technol, 2020, 49(6): 98
|
[28] |
陈泽旭, 吴盾, 刘春林, 等. 表面处理对316L不锈钢粉末注射成形性能的影响. 粉末冶金技术, 2023, 41(4): 289
Chen Z X, Wu D, Liu C L, et al. Effect of surface treatment on powder injection molding performance of 316L stainless steel powders. Powder Metall Technol, 2023, 41(4): 289
|
[29] |
刘春林, 张钱鹏, 陆颖, 等. 表面活性剂对Ti–6Al–4V金属注射成形喂料相容性的影响. 高分子材料科学与工程, 2018, 34(9): 96
Liu C L, Zhang Q P, Lu Y, et al. Effect of surfactants on compatibility of Ti–6Al–4V metal injection molding feedstocks. Polym Mater Sci Eng, 2018, 34(9): 96
|
[30] |
Setasuwon P, Bunchavimonchet A, Danchaivijit S. The effects of binder components in wax/oil systems for metal injection molding. J Mater Process Technol, 2008, 196(1-3): 94 DOI: 10.1016/j.jmatprotec.2007.05.009
|
[31] |
Martínková M, Hausnerová B, Huba J, et al. Powder injection molded ceramic scaffolds: The role of pores size and surface functionalization on the cytocompatibility. Mater Des, 2022, 224: 111274 DOI: 10.1016/j.matdes.2022.111274
|
[32] |
Cho H, Park J M, Kim J H, et al. Mass production of superhydrophilic micropatterned copper surfaces using powder injection molding process. Powder Technol, 2022, 411: 117779 DOI: 10.1016/j.powtec.2022.117779
|
[33] |
尤力, 刘艳军, 潘宇, 等. 粉末注射成形钛合金粘结剂体系的研究进展. 粉末冶金技术, 2021, 39(6): 563
You L, Liu Y J, Pan Y, et al. Research progress of titanium alloy binder system for powder injection molding. Powder Metall Technol, 2021, 39(6): 563
|
[34] |
王家惠, 史庆南, 许国红, 等. 粉末注射成形钛合金溶剂脱脂过程研究. 铸造技术, 2011, 32(3): 361
Wang J H, Shi Q N, Xu G H, et al. Research on solvent debinding process for titanium alloy injection molded compacts. Foundry Technol, 2011, 32(3): 361
|
[35] |
李益民, 李云平. 金属注射成形原理与应用. 长沙: 中南大学出版社, 2004
Li Y M, Li Y P. Theory and Application of Metal Injection Molding. Changsha: Central South University Press, 2004
|
[36] |
刘斌, 叶红叶, 王玉香, 等. 316L/POM复合材料熔融沉积成型件的催化脱脂工艺研究. 粉末冶金技术, 2022, 40(6): 510
Liu B, Ye H Y, Wang Y X, et al. Research on catalyst debinding process of 316L/POM composite parts fabricated by fused deposition modeling. Powder Metall Technol, 2022, 40(6): 510
|
[37] |
Huang J D, Li J. Evolution of thermophysical properties of gel-cast SiAlON green bodies in thermal debinding process. J Aust Ceram Soc, 2022, 58(1): 347 DOI: 10.1007/s41779-021-00697-9
|
[38] |
Vetter J, Huber F, Wachter S, et al. Development of a material extrusion additive manufacturing process of 1.2083 steel comprising FFF printing, solvent and thermal debinding and sintering. Proced CIRP, 2022, 113: 341
|
[39] |
罗蒙, 周芬, 宋希文. 一种铁基合金的粉末注射成形脱脂工艺研究. 粉末冶金工业, 2019, 29(5): 68
Luo M, Zhou F, Song X W. A powder injection molding debinding process for iron-based alloys. Powder Metall Ind, 2019, 29(5): 68
|
[40] |
Qin M L, Lu H F, Wu H Y, et al. Powder injection molding of complex-shaped aluminium nitride ceramic with high thermal conductivity. J Eur Ceram Soc, 2019, 39(4): 952 DOI: 10.1016/j.jeurceramsoc.2018.11.037
|
[41] |
邱婷婷, 吴茂, 杜智渊, 等. 粉末冶金铝合金烧结致密化过程. 工程科学学报, 2018, 40(9): 1075
Qiu T T, Wu M, Du Z Y, et al. Sintering densification process of powder metallurgy aluminum alloy. Chin J Eng, 2018, 40(9): 1075
|
[42] |
Misra A K. Thermochemical analysis of the silicon carbide-alumina reaction with reference to liquid-phase sintering of silicon carbide. J Am Ceram Soc, 1991, 74(2): 345 DOI: 10.1111/j.1151-2916.1991.tb06885.x
|
[43] |
Candelario V M, Nieto M I, Guiberteau F, et al. Aqueous colloidal processing of SiC with Y3Al5O12 liquid-phase sintering additives. J Eur Ceram Soc, 2013, 33(10): 1685 DOI: 10.1016/j.jeurceramsoc.2013.01.030
|
[44] |
Mohammadzadeh A, Azadbeh M, Namini A S. Densification and volumetric change during supersolidus liquid phase sintering of prealloyed brass Cu28Zn powder: Modeling and optimization. Sci Sinter, 2014, 46(1): 23 DOI: 10.2298/SOS1401023M
|
[45] |
Karwan B J. The properties of Fe–Ni–Mo–Cu–B materials produced via liquid phase sintering. Arch Metall Mater, 2011, 56(3): 789
|
[46] |
Lang F Q, Yamaguchi H, Nakagawa H, et al. Thermally stable bonding of SiC devices with ceramic substrates: transient liquid phase sintering using Cu/Sn powders. J Electrochem Soc, 2013, 160(8): 315 DOI: 10.1149/2.114308jes
|
[47] |
Izhevskyi V A, Genova L A, Bressiani J C, et al. Liquid-phase sintering of SiC-based ceramics. Key Eng Mater, 2001, 189-191: 173 DOI: 10.4028/www.scientific.net/KEM.189-191.173
|
[48] |
Mohammadi M S, Simchi A, Gierl C. Phase formation and microstructural evolution during sintering of Al–Zn–Mg–Cu alloys. Powder Metall, 2010, 53(1): 62 DOI: 10.1179/003258908X344707
|
[49] |
Crossin E, Yao J Y, Schaffer G B, et al. Swelling during liquid phase sintering of Al–Mg–Si–Cu alloys. Powder Metall, 2007, 50(4): 354 DOI: 10.1179/174329007X223947
|
[50] |
Muthuchamy A, Srikanth M, Agrawal D K, et al. Effect of microwave and conventional modes of heating on sintering behavior, microstructural evolution and mechanical properties of Al–Cu–Mn alloys. Molecules, 2021, 26(12): 3675 DOI: 10.3390/molecules26123675
|
[51] |
党文龙, 汪礼敏, 杨振亮, 等. 烧结气氛与温度对AlCuMgSi合金性能的影响. 粉末冶金材料科学与工程, 2014, 19(6): 921 DOI: 10.3969/j.issn.1673-0224.2014.06.013
Dang W L, Wang L M, Yang Z L, et al. Effect of sintering atmosphere and temperature on the performance of P/M Al–Cu–Mg–Si alloy. Mater Sci Eng Powder Metall, 2014, 19(6): 921 DOI: 10.3969/j.issn.1673-0224.2014.06.013
|
[52] |
Schaffer G B, Hall B J, Bonner S J, et al. The effect of the atmosphere and the role of pore filling on the sintering of aluminium. Acta Mater, 2006, 54(1): 131
|
[53] |
Schubert T, Pieczonka T, Baunack S, et al. The influence of the atmosphere and impurities on the sintering behaviour of aluminium // Euro PM 2005 Powder Metallurgy Congress and Exhibition. Prague, 2005: 3
|
[54] |
Yu P, Ma Q, Schaffer G B. Rapid prototyping of aluminium alloy parts: the effect of infiltration atmosphere. Mater Sci Forum, 2009, 618-619: 635 DOI: 10.4028/www.scientific.net/MSF.618-619.635
|
[55] |
Asgharzadeh H, Simchi A. Supersolidus liquid phase sintering of Al6061/SiC metal matrix composites. Powder Metall, 2013, 52(1): 28
|
[56] |
Sercombe T B, Schaffer G B. The effect of trace elements on the sintering of Al–Cu alloys. Acta Mater, 1999, 47(2): 689 DOI: 10.1016/S1359-6454(98)00353-X
|
[57] |
MacAskill I A, Hexemer R L, Donaldson I W, et al. Effects of magnesium, tin and nitrogen on the sintering response of aluminum powder. J Mater Process Technol, 2010, 210(15): 2252 DOI: 10.1016/j.jmatprotec.2010.08.018
|
[58] |
Lumley R N, Sercombe T B, Schaffer G M. Surface oxide and the role of magnesium during the sintering of aluminum. Metall Mater Trans A, 1999, 30(2): 457 DOI: 10.1007/s11661-999-0335-y
|
[59] |
Kondoh K, Kimura A, Watanabe R. Effect of Mg on sintering phenomenon of aluminium alloy powder particle. Powder Metall, 2001, 44(2): 161 DOI: 10.1179/003258901666310
|
[60] |
Sercombe T B, Schaffer G B. On the role of tin in the nitridation of aluminium powder. Scr Mater, 2006, 55(4): 323 DOI: 10.1016/j.scriptamat.2006.04.045
|
[61] |
Pan Y, Lu X, Liu C C, et al. Effect of Sn addition on densification and mechanical properties of sintered TiAl base alloys. Acta Metall Sin, 2018, 54(1): 93
|
[62] |
Schaffer G B, Yao J Y, Bonner S J, et al. The effect of tin and nitrogen on liquid phase sintering of Al–Cu–Mg–Si alloys. Acta Mater, 2008, 56(11): 2615 DOI: 10.1016/j.actamat.2008.01.047
|