AdvancedSearch
LIU Shangyang, YANG Bo, MAO Jian. Thermal coupling analysis and residual stress prediction of aluminum alloy SLM[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2023120003
Citation: LIU Shangyang, YANG Bo, MAO Jian. Thermal coupling analysis and residual stress prediction of aluminum alloy SLM[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2023120003

Thermal coupling analysis and residual stress prediction of aluminum alloy SLM

More Information
  • Corresponding author:

    MAO Jian, E-mail: jmao@sues.edu.cn

  • Received Date: January 15, 2024
  • Accepted Date: January 15, 2024
  • Available Online: January 16, 2024
  • In this paper, the thermal and mechanical coupling analysis of AlSi10Mg SLM forming process is carried out by using ANSYS finite element analysis software and experimental verification is carried out. Aiming at the problem that SLM numerical simulation of aluminum alloy is not accurate enough and the residual stress prediction efficiency is low, JMatPro software is used to calculate the nonlinear thermal physical property parameters of AlSi10Mg at different temperatures, and the material state transformation is realized by UDMAT subroutine of ANSYS, so as to improve the accuracy of numerical simulation. The influence of different laser process parameters on temperature field and stress field was studied through the thermodynamic coupling numerical model established. Finally, the corresponding AlSi10Mg sample printing experiment was carried out, and the residual stress of the sample was measured by X-ray stress analyzer. The results show that there are obvious peaks in the curves during the scanning of each layer, and good remelting lap between tracks and layers can be achieved. With the decrease of scanning rate or the increase of laser power, the maximum temperature and molten pool size increase. In the forming process, the stress along the scanning direction is the largest, and the stress perpendicular to the scanning direction is the smallest. The error between the residual stress and the experimental value obtained by the thermodynamic coupling model is less than 8%. The residual stress of SLM can be predicted by the thermodynamic coupling model.
  • [1]
    张亚民, 吴姚莎, 杨均保, 等. 选区激光熔化用TiB2/AlSi10Mg复合粉体的制备及性能. 粉末冶金技术, 2023, 41(3): 234

    Zhang Y M, Wu Y S, Yang J B, et al. Preparation and properties of TiB2/AlSi10Mg composite powders used for selective laser melting. Powder Metall Technol, 2023, 41(3): 234
    [2]
    李莹, 张百成, 曲选辉. 金属增材制造的微观组织特征对其抗腐蚀行为影响的研究进展. 工程科学学报, 2022, 44(4): 573 DOI: 10.3321/j.issn.1001-053X.2022.4.bjkjdxxb202204011

    Li Y, Zhang B C, Qu X H. Research progress on the influence of microstructure characteristics of metal additive manufacturing on its corrosion resistance. Chin J Eng, 2022, 44(4): 573 DOI: 10.3321/j.issn.1001-053X.2022.4.bjkjdxxb202204011
    [3]
    Mercelis P, Kruth J. Residual stresses in selective laser sintering and selective laser melting. Rap Prototyp J, 2006, 12(5): 254 DOI: 10.1108/13552540610707013
    [4]
    Desmaison O, Pires P A, Levesque G, et al. Influence of computational grid and deposit volume on residual stress and distortion prediction accuracy for additive manufacturing modeling // Proceedings of the 4th World Congress on Integrated Computational Materials Engineering (ICME 2017). Ypsilanti, 2017: 365
    [5]
    王长顺, 王齐胜, 林昕, 等. 选区激光熔融过程中多热源扫描的热力耦合有限元分析. 武汉科技大学学报, 2023, 46(6): 451 DOI: 10.3969/j.issn.1674-3644.2023.06.008

    Wang C S, Wang Q S, Lin X, et al. Thermal coupling finite element analysis of multi-heat source scanning in selective laser melting process. J Wuhan Univ Sci Technol, 2023, 46(6): 451 DOI: 10.3969/j.issn.1674-3644.2023.06.008
    [6]
    来佑彬, 刘伟军, 孔源, 等. 激光快速成形TA15残余应力影响因素的研究. 稀有金属材料与工程, 2013, 42(7): 1526 DOI: 10.3969/j.issn.1002-185X.2013.07.043

    Lai Y B, Liu W J, Kong Y, et al. Influencing factors of residual stress of Ti–6.5Al–1Mo–1V–2Zr alloy by laser rapid forming process. Rare Met Mater Eng, 2013, 42(7): 1526 DOI: 10.3969/j.issn.1002-185X.2013.07.043
    [7]
    Parry L, Ashcroft I A, Wildman R D. Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation. Addit Manuf, 2016, 12: 1
    [8]
    Huang Y, Yang L J, Du X Z, et a1. Finite element analysis of thermal behavior of meml powder during selective laser melting. Int J ThermSci, 2016, 104: 146 DOI: 10.1016/j.ijthermalsci.2016.01.007
    [9]
    文舒, 董安平, 陆燕玲, 等. GH536高温合金选区激光熔化温度场和残余应力的有限元模拟. 金属学报, 2018, 54(3): 393

    Wen S, Dong A P, Lu Y L, et al. Finite element simulation of the temperature field and residual stress in GH536 superalloy treated by selective laser melting. Acta Met Sin, 2018, 54(3): 393
    [10]
    廖英岚. 激光选区熔化成形GH4169高温合金的残余应力研究[学位论文]. 武汉: 华中科技大学, 2018

    Liao Y L. Research on Residual Stress of GH4169 Super-alloy Fabricated by Selective Laser Melting [Dissertation]. Wuhan: Huazhong University of Science and Technology, 2018
    [11]
    Carslaw H S, Jaeger J C. Conduction of Heat in Solids. Oxford: Oxford University Press, 1986
    [12]
    Hussein A, Hao L, Yan C, et al. Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting. Mater Des, 2013, 52: 638 DOI: 10.1016/j.matdes.2013.05.070
    [13]
    汪建华. 焊接数值模拟技术及其应用. 1版. 上海: 上海交通大学出版社, 2003

    Wang J H. Welding Numerical Simulation Technology and Its Application. 1st Ed. Shanghai: Shanghai JiaoTong University Press, 2003
    [14]
    毕艳霞. T型接头焊接温度场与应力场的数值模拟[学位论文]. 杭州: 浙江大学, 2008

    Bi Y X. Numerical Simulation of Welding Temperature Field and Stress Field of T-joint [Dissertation]. Hangzhou: Zhejiang University, 2008
    [15]
    王根旺. 基于能量分布的激光热源模型建立及其仿真应用研究[学位论文]. 哈尔滨: 哈尔滨工业大学, 2017

    Wang G W. Research on Building Laser Heat Source Model Based on Energy Distribution and Its Simulation Application [Dissertation]. Harbin: Harbin Institute of Technology, 2017
    [16]
    王岩, 刘雨萌, 刘江伟, 等. 金属增材制造数值模拟研究进展. 粉末冶金技术, 2022, 40(2): 179

    Wang Y, Liu Y M, Liu J W, et al. Research progress on numerical simulation of metal additive-manufacturing process. Powder Metall Technol, 2022, 40(2): 179
    [17]
    Li Z H, Yang S, Liu B, et al. Simulation of temperature field and stress field of selective laser melting of multi-layer metal powder. Opt Laser Technol, 2021, 140: 106782 DOI: 10.1016/j.optlastec.2020.106782
    [18]
    边培莹, 徐可为, 尹恩怀, 等. 扫描路径对选区激光熔化热力演变的影响. 激光与光电子学进展, 2023, 60(9): 283

    Bian P Y, XU K W, Yin Enhuai, et al. Effect of scanning strategy on thermodynamics evolution of selective laser melting. Adv Laser Optoelectr, 2023, 60(9): 283
    [19]
    徐仁俊. 基于选择性激光熔化技术的有限元分析和扫描路径优化[学位论文]. 重庆: 重庆大学, 2016

    Xu R J. Finite Finite Element Analysis and Scanning Strategy Optimization Based on Selective Laser Melting [Dissertation]. Chongqing: Chongqing University, 2016
  • Related Articles

    [1]DENG Xiaochun, KANG Xiaodong, ZHANG Guohua. Preparation of WC–xVC composite powders and the effect of high content VC on microstructure and mechanical properties of WC–Co based cemented carbides[J]. Powder Metallurgy Technology, 2024, 42(3): 226-233, 254. DOI: 10.19591/j.cnki.cn11-1974/tf.2023120013
    [2]YAO Hui-long, XIONG Ning, WANG Ling, QIN Ying-nan, ZHOU Wu-ping, YANG Lin. Effect of cyclic heat treatment on impact toughness of 93W–5Ni–2Fe tungsten heavy alloy[J]. Powder Metallurgy Technology, 2021, 39(3): 269-273. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030009
    [3]Chen Ding, Hu Shan, Zhang Zhongjian, Xu Tao, Peng Wen, Yuan Hongmei. Research status of fracture toughness testing for cemented carbides[J]. Powder Metallurgy Technology, 2013, 31(3): 216-222. DOI: 10.3969/j.issn.1001-3784.2013.03.011
    [4]Xie Zhuangde, Shen Jun, Dong Yinsheng, Zhou Bide, Li Qingchun. RAPIDLY SOLIDIFIED ALUMINUM-SILICON ALLOYS PRODUCTION, MICROSTRUCTURE AND FRACTURE BEHAVIOR[J]. Powder Metallurgy Technology, 2000, 18(2): 111-116.
    [5]Liu Ning, Jiang Yong, Lu Qingrong, Xiong Weihao, Cui Kun, Hu Zhenhua. EFFECT OF CHEMICAL COMPOSITION ON THE FRACTURE TOUGHNESS OF Ti(C, N) BASED CERMETS[J]. Powder Metallurgy Technology, 1999, 17(4): 269-272.
    [6]Cao Shunhua, Xu Runze. Measurement of Sintered Steel's Fracture Toughness by Repeated Impact with Low Energy[J]. Powder Metallurgy Technology, 1997, 15(3): 217-219.
    [7]Tong Guoquan, Wang Erde, He Shaoyuan. STUDY ON TESTING METHOD AND FRACTURE MODE OF WC-20(Fe/Co/Ni) CEMENTED CARBIDE[J]. Powder Metallurgy Technology, 1995, 13(1): 38-43.
    [8]Luo Huahui, Shen Shuting, Cai Yixun. A STUDY OF FRACTURE TOUGHNESS OF HARDMETALS BY CHEVRON-NOTCHING METHOD[J]. Powder Metallurgy Technology, 1989, 7(3): 165-171.
    [9]Huang Luguan. FRACTURE TOUGHNESS AND HIGH DUCTILITY OF STEEL-BONDED CARBIDE[J]. Powder Metallurgy Technology, 1986, 4(1): 10-15.
    [10]Zhen Zhenxian, Yao Heng, Zhu Guisen, Liu Mingcheng. EFFECTS OF VACUUM HEAT-TREATMENT ON FRACTURE TOUGHNESS OF HEAVY ALLOYS (95W-3.5Ni-1.5Fe)[J]. Powder Metallurgy Technology, 1984, 2(4): 11-15.

Catalog

    Article Metrics

    Article views (122) PDF downloads (23) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return