Citation: | LIU Shangyang, YANG Bo, MAO Jian. Thermal coupling analysis and residual stress prediction of aluminum alloy SLM[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2023120003 |
[1] |
张亚民, 吴姚莎, 杨均保, 等. 选区激光熔化用TiB2/AlSi10Mg复合粉体的制备及性能. 粉末冶金技术, 2023, 41(3): 234
Zhang Y M, Wu Y S, Yang J B, et al. Preparation and properties of TiB2/AlSi10Mg composite powders used for selective laser melting. Powder Metall Technol, 2023, 41(3): 234
|
[2] |
李莹, 张百成, 曲选辉. 金属增材制造的微观组织特征对其抗腐蚀行为影响的研究进展. 工程科学学报, 2022, 44(4): 573 DOI: 10.3321/j.issn.1001-053X.2022.4.bjkjdxxb202204011
Li Y, Zhang B C, Qu X H. Research progress on the influence of microstructure characteristics of metal additive manufacturing on its corrosion resistance. Chin J Eng, 2022, 44(4): 573 DOI: 10.3321/j.issn.1001-053X.2022.4.bjkjdxxb202204011
|
[3] |
Mercelis P, Kruth J. Residual stresses in selective laser sintering and selective laser melting. Rap Prototyp J, 2006, 12(5): 254 DOI: 10.1108/13552540610707013
|
[4] |
Desmaison O, Pires P A, Levesque G, et al. Influence of computational grid and deposit volume on residual stress and distortion prediction accuracy for additive manufacturing modeling // Proceedings of the 4th World Congress on Integrated Computational Materials Engineering (ICME 2017). Ypsilanti, 2017: 365
|
[5] |
王长顺, 王齐胜, 林昕, 等. 选区激光熔融过程中多热源扫描的热力耦合有限元分析. 武汉科技大学学报, 2023, 46(6): 451 DOI: 10.3969/j.issn.1674-3644.2023.06.008
Wang C S, Wang Q S, Lin X, et al. Thermal coupling finite element analysis of multi-heat source scanning in selective laser melting process. J Wuhan Univ Sci Technol, 2023, 46(6): 451 DOI: 10.3969/j.issn.1674-3644.2023.06.008
|
[6] |
来佑彬, 刘伟军, 孔源, 等. 激光快速成形TA15残余应力影响因素的研究. 稀有金属材料与工程, 2013, 42(7): 1526 DOI: 10.3969/j.issn.1002-185X.2013.07.043
Lai Y B, Liu W J, Kong Y, et al. Influencing factors of residual stress of Ti–6.5Al–1Mo–1V–2Zr alloy by laser rapid forming process. Rare Met Mater Eng, 2013, 42(7): 1526 DOI: 10.3969/j.issn.1002-185X.2013.07.043
|
[7] |
Parry L, Ashcroft I A, Wildman R D. Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation. Addit Manuf, 2016, 12: 1
|
[8] |
Huang Y, Yang L J, Du X Z, et a1. Finite element analysis of thermal behavior of meml powder during selective laser melting. Int J ThermSci, 2016, 104: 146 DOI: 10.1016/j.ijthermalsci.2016.01.007
|
[9] |
文舒, 董安平, 陆燕玲, 等. GH536高温合金选区激光熔化温度场和残余应力的有限元模拟. 金属学报, 2018, 54(3): 393
Wen S, Dong A P, Lu Y L, et al. Finite element simulation of the temperature field and residual stress in GH536 superalloy treated by selective laser melting. Acta Met Sin, 2018, 54(3): 393
|
[10] |
廖英岚. 激光选区熔化成形GH4169高温合金的残余应力研究[学位论文]. 武汉: 华中科技大学, 2018
Liao Y L. Research on Residual Stress of GH4169 Super-alloy Fabricated by Selective Laser Melting [Dissertation]. Wuhan: Huazhong University of Science and Technology, 2018
|
[11] |
Carslaw H S, Jaeger J C. Conduction of Heat in Solids. Oxford: Oxford University Press, 1986
|
[12] |
Hussein A, Hao L, Yan C, et al. Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting. Mater Des, 2013, 52: 638 DOI: 10.1016/j.matdes.2013.05.070
|
[13] |
汪建华. 焊接数值模拟技术及其应用. 1版. 上海: 上海交通大学出版社, 2003
Wang J H. Welding Numerical Simulation Technology and Its Application. 1st Ed. Shanghai: Shanghai JiaoTong University Press, 2003
|
[14] |
毕艳霞. T型接头焊接温度场与应力场的数值模拟[学位论文]. 杭州: 浙江大学, 2008
Bi Y X. Numerical Simulation of Welding Temperature Field and Stress Field of T-joint [Dissertation]. Hangzhou: Zhejiang University, 2008
|
[15] |
王根旺. 基于能量分布的激光热源模型建立及其仿真应用研究[学位论文]. 哈尔滨: 哈尔滨工业大学, 2017
Wang G W. Research on Building Laser Heat Source Model Based on Energy Distribution and Its Simulation Application [Dissertation]. Harbin: Harbin Institute of Technology, 2017
|
[16] |
王岩, 刘雨萌, 刘江伟, 等. 金属增材制造数值模拟研究进展. 粉末冶金技术, 2022, 40(2): 179
Wang Y, Liu Y M, Liu J W, et al. Research progress on numerical simulation of metal additive-manufacturing process. Powder Metall Technol, 2022, 40(2): 179
|
[17] |
Li Z H, Yang S, Liu B, et al. Simulation of temperature field and stress field of selective laser melting of multi-layer metal powder. Opt Laser Technol, 2021, 140: 106782 DOI: 10.1016/j.optlastec.2020.106782
|
[18] |
边培莹, 徐可为, 尹恩怀, 等. 扫描路径对选区激光熔化热力演变的影响. 激光与光电子学进展, 2023, 60(9): 283
Bian P Y, XU K W, Yin Enhuai, et al. Effect of scanning strategy on thermodynamics evolution of selective laser melting. Adv Laser Optoelectr, 2023, 60(9): 283
|
[19] |
徐仁俊. 基于选择性激光熔化技术的有限元分析和扫描路径优化[学位论文]. 重庆: 重庆大学, 2016
Xu R J. Finite Finite Element Analysis and Scanning Strategy Optimization Based on Selective Laser Melting [Dissertation]. Chongqing: Chongqing University, 2016
|
[1] | CHEN Xinyu, LI Fenqiang, JIANG Jishuai. Application and development of numerical simulation on mesoscopic analysis of powder compaction[J]. Powder Metallurgy Technology, 2024, 42(4): 418-426. DOI: 10.19591/j.cnki.cn11-1974/tf.2022050001 |
[2] | WANG Guangda, XIONG Ning, ZHONG Ming, LIU Guohui. Numerical simulation of pure tungsten plate rolling in large size[J]. Powder Metallurgy Technology, 2023, 41(4): 315-321. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030012 |
[3] | LI Chang, CHEN Lei-lei, QU Zong-hong, LIU Kui-sheng, LAI Yun-jin, LIANG Shu-jin. Numerical simulation study of effect of die structure on the extrusion deformation of FGH4096 alloys[J]. Powder Metallurgy Technology, 2022, 40(3): 277-283. DOI: 10.19591/j.cnki.cn11-1974/tf.2021080014 |
[4] | WANG Yan, LIU Yu-meng, LIU Jiang-wei, WEI Ying-kang, ZHANG Liang-liang, WANG Jian-yong, SHANG Wei-wei, LIU Shi-feng. Research progress on numerical simulation of metal additive-manufacturing process[J]. Powder Metallurgy Technology, 2022, 40(2): 179-192. DOI: 10.19591/j.cnki.cn11-1974/tf.2021120005 |
[5] | HOU Cheng-long, GUO Jun-qing, CHEN Fu-xiao, HUANG Tao. Metal powder injection molding technology and numerical simulation[J]. Powder Metallurgy Technology, 2022, 40(1): 72-79. DOI: 10.19591/j.cnki.cn11-1974/tf.2020120007 |
[6] | YANG Dong-lin, DUAN Bo-hua, WANG De-zhi. Numerical simulation and experimental investigation on multi-directional forging of pure molybdenum[J]. Powder Metallurgy Technology, 2021, 39(3): 216-222. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030010 |
[7] | SHEN Xiao-ping, HUANG Yong-qiang. Optimization of powder net-shape compacting technology and structural design of 3D complex parts by numerical simulation[J]. Powder Metallurgy Technology, 2019, 37(4): 298-305. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.04.010 |
[8] | Li Daren, Cai Yixiang, Wang Erde. The numerical simulation of powder canning hot extrusion of W-4OCu alloy[J]. Powder Metallurgy Technology, 2012, 30(4): 266-273. DOI: 10.3969/j.issn.1001-3784.2012.04.005 |
[9] | Liu Ye, Qu Xuanhui, Yin Haiqing. Effect of the process parameters on alumina ceramic micro-gear injection molding in numerical simulation[J]. Powder Metallurgy Technology, 2010, 28(5): 381-386. |
[10] | Chen Xiaoan, Shang Fujun, Song Shuncheng. Numerical simulation for spark plasma sintering of W powder[J]. Powder Metallurgy Technology, 2010, 28(4): 256-261. |