Citation: | ZHOU Hongdeng, Xu Wenjin, TIAN Qingchao. Influence of ingredient and preparation process on the microstructure of TZC molybdenum alloys[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2024010004 |
Different sintering and hot-pressing processes were employed to prepare the TZC alloys doped by TiH2/ZrH2 and TiC/ZrC, respectively. The microstructure evolution and composition distribution of the alloys under the different processing conditions were studied by optical metallographic observation, scanning electron microscopy, and phase analysis. The results show that the phase constituents of these two doping are basically the same. Comparison with that of the TZC alloys doped by TiH2/ZrH2, the density of the TZC alloys doped by TiC/ZrC after sintering increases from 9.21 g·cm−3 to 9.68 g·cm−3, and the hardness increases from HV 210 to HV 245, respectively. Hot pressing after sintering significantly increases the density and hardness of the alloys, and the grain distribution changes from the bimodal distribution in the sintered state to the unimodal distribution. It is found that the phase structures of these two doping undergo transformation during the high-temperature sintering, which determines the reaction diffusion process and thereby affects the density and hardness. The TZC alloys doped by TiH2/ZrH2 form the different characteristic regions in the microstructure after hot pressing, and the TZC alloys doped by TiC/ZrC with fine grain, high relative density, and high hardness can be directly obtained by hot-pressing.
[1] |
潘以庆, 田青超, 徐文进. 钼合金顶头制备技术研究进展. 粉末冶金技术, 2021, 39(5): 452
Pan Y Q, Tian Q C, Xu W J. Research progress on the preparation technology of molybdenum alloy piercing plug. Powder Metall Technol, 2021, 39(5): 452
|
[2] |
王承阳, 常洋, 张林海, 等. 氧化锆含量对钼合金组织和性能的影响. 粉末冶金技术, 2021, 39(5): 429
Wang C Y, Chang Y, Zhang L H, et al. Effect of ZrO2 content on microstructure and properties of molybdenum alloys. Powder Metall Technol, 2021, 39(5): 429
|
[3] |
于志涛, 王快社, 胡平, 等. 低氧TZM合金研究进展. 材料导报, 2015, 29(1): 92 DOI: 10.11896/j.issn.1005-023X.2015.01.016
Yu Z T, Wang K S, Hu P, et al. Progress of low oxygen TZM molybdenum alloy. Mater Rev, 2015, 29(1): 92 DOI: 10.11896/j.issn.1005-023X.2015.01.016
|
[4] |
Chakrabortya S P, Dey G K. The preparation of a molybdenum based high temperature refractory alloy by powder processing route. Global J Eng Sci Res Manage, 2015, 2(2): 36
|
[5] |
朱向炜, 张国赏, 魏世忠, 等. Ti、Zr加入形式对TZM合金组织和性能的影响. 稀有金属与硬质合金, 2013, 41(4): 30
Zhu X W, Zhang G S, Wei S Z, et al. Effect of Ti and Zr adding forms on microstructure and properties of TZM alloy. Rare Met Cement Carb, 2013, 41(4): 30
|
[6] |
Fan J, Lu M, Cheng H, et al. Effect of alloying elements Ti, Zr on the property and microstructure of molybdenum. Int J Refract Met Hard Mater, 2009, 27(1): 78 DOI: 10.1016/j.ijrmhm.2008.03.006
|
[7] |
Hu B L, Wang K S, Hu P, et al. Effect of secondary phases on the strength and elongation of a novel Mo−TiC−ZrC−C alloy. Int J Refract Met Hard Mater, 2020, 92: 105336 DOI: 10.1016/j.ijrmhm.2020.105336
|
[8] |
Liu R, Xie Z M, Yang J F, et al. Recent progress on the R&D of W−ZrC alloys for plasma facing components in fusion devices. Nucl Mater Energy, 2018, 16: 191 DOI: 10.1016/j.nme.2018.07.002
|
[9] |
Jing K, Liu R, Xie Z M, et al. Excellent high-temperature strength and ductility of the ZrC nanoparticles dispersed molybdenum. Acta Mater, 2022, 227: 117725 DOI: 10.1016/j.actamat.2022.117725
|
[10] |
Jing K, Cheng X, Liu R, et al. Enhanced mechanical properties and thermal stability of hot-rolled Mo−0.5%ZrC alloy. Mater Sci Eng A, 2022, 854: 143803 DOI: 10.1016/j.msea.2022.143803
|
[11] |
Kurishita H, Kitsunai Y, Hiraoka Y, et al. Development of molybdenum alloy with high toughness at low temperatures. Mater Trans JIM, 1996, 37(1): 89 DOI: 10.2320/matertrans1989.37.89
|
[12] |
卢明园, 范景莲, 成会朝, 等. TiC的添加对Mo−Ti合金性能与组织结构的影响. 稀有金属材料与工程, 2010, 39(6): 985
Lu M Y, Fan J L, Cheng H C, et al. Influence of TiC addition on properties and microstructure of Mo−Ti alloy. Rare Met Mater Eng, 2010, 39(6): 985
|
[13] |
成会朝, 范景莲, 钱昭, 等. 微量ZrC对Mo−Ti−Zr合金显微组织与性能的影响. 中国科技论文, 2013, 8(6): 521 DOI: 10.3969/j.issn.2095-2783.2013.06.007
Cheng H C, Fan J L, Qian Z, et al. Effects of trace ZrC on properties and microstructure of Mo−Ti−Zr alloys. China Sci Pap, 2013, 8(6): 521 DOI: 10.3969/j.issn.2095-2783.2013.06.007
|
[14] |
Rock C, Lara-Curzio E, Ellis B, et al. Additive manufacturing of pure Mo and Mo +TiC MMC alloy by electron beam powder bed fusion. JOM, 2020, 72(12): 4202 DOI: 10.1007/s11837-020-04442-8
|
[15] |
曾建辉. 稀土钼顶头材质的研究. 稀有金属与硬质合金, 2001(2): 30 DOI: 10.3969/j.issn.1004-0536.2001.02.008
Zeng J H. Study of RE Mo ejector material. Rare Met Cement Carb, 2001(2): 30 DOI: 10.3969/j.issn.1004-0536.2001.02.008
|
[16] |
周红灯, 徐文进, 田青超. 钼合金穿孔顶头失效分析. 钢管, 2023, 52(1): 78
Zhou H D, Xu W J, Tian Q C. Failure analysis of Mo alloy piercing plug. Steel Pipe, 2023, 52(1): 78
|
[17] |
王苗, 杨双平, 孙海兴, 等. 钼基合金的强韧化研究现状及展望. 中国钼业, 2021, 45(6): 23
Wang M, Yang S P, Sun H X, et al. Research status and prospect of strengthening and toughening of molybdenum alloy. China Molybd Ind, 2021, 45(6): 23
|
[18] |
Ahmadi E, Malekzadeh M, Sadrnezhaad S K. Preparation of nanostructured high-temperature TZM alloy by mechanical alloying and sintering. Int J Refract Met Hard Mater, 2011, 29(1): 141 DOI: 10.1016/j.ijrmhm.2010.09.003
|
[19] |
罗明, 范景莲, 成会朝, 等. (Mo, Zr, Ti) xO y粒子对旋锻Mo−Ti−Zr合金性能和组织的影响. 粉末冶金材料科学与工程, 2008, 13(6): 335 DOI: 10.3969/j.issn.1673-0224.2008.06.004
Luo M, Fan J L, Cheng H C, et al. Influence of (Mo, Zr, Ti) xO y particles on mechanical properties and microstructure of rotary forging Mo−Ti−Zr alloy. Mater Sci Eng Powder Metall, 2008, 13(6): 335 DOI: 10.3969/j.issn.1673-0224.2008.06.004
|
[20] |
Hu B, Wang K, Hu P, et al. Secondary phases formation in lanthanum-doped titanium−zirconium−molybdenum alloy. J Alloys Compd, 2018, 757: 340 DOI: 10.1016/j.jallcom.2018.05.103
|
[21] |
Ki Y M, Hiraoka Y, Kurishita H, et al. Recrystallization of TiC dispersion Mo-alloy. Int J Refract Met Hard Mater, 1996, 14(5): 355
|
[22] |
Payton E J, Wang G, Mills M J, et al. Effect of initial grain size on grain coarsening in the presence of an unstable population of pinning particles. Acta Mater, 2013, 61(4): 1316 DOI: 10.1016/j.actamat.2012.11.009
|
[23] |
田高龙, 徐流杰, 李洲, 等. TZM合金力学性能调控的研究进展. 材料热处理学报, 2023, 44(9): 15
Tian G L, Xu L J, Li Z, et al. Research progress on mechanical properties control of TZM alloy. Trans Mater Heat Treat, 2023, 44(9): 15
|