AdvancedSearch
SHANG Feng, WANG Zhi-yong, QIAO Bin, HE Yi-qiang, LI Hua-qiang. Microstructure and properties of UNS S32750 super-duplex stainless steels processed by hot isostatic pressing[J]. Powder Metallurgy Technology, 2022, 40(6): 483-487. DOI: 10.19591/j.cnki.cn11-1974/tf.2020060013
Citation: SHANG Feng, WANG Zhi-yong, QIAO Bin, HE Yi-qiang, LI Hua-qiang. Microstructure and properties of UNS S32750 super-duplex stainless steels processed by hot isostatic pressing[J]. Powder Metallurgy Technology, 2022, 40(6): 483-487. DOI: 10.19591/j.cnki.cn11-1974/tf.2020060013

Microstructure and properties of UNS S32750 super-duplex stainless steels processed by hot isostatic pressing

More Information
  • Corresponding author:

    SHANG Feng, E-mail: shangfeng@jou.edu.cn

  • Received Date: June 23, 2020
  • Accepted Date: July 20, 2020
  • Available Online: July 09, 2022
  • The UNS S32750 super-duplex stainless steels were prepared by plasma rotating electrode processing and hot isostatic pressing in this study. The microstructure and mechanical properties of the steels before and after the solution treatment were investigated by optical microscope (OM), scanning electron microscope (SEM), electron back scattering diffraction (EBSD), and electronic material testing machine. The results indicate that the UNS S32750 super-duplex stainless steel powders prepared by plasma rotary electrode processing can be densified by hot isostatic pressing sintering at 1200 ℃ for 3 h at 150 MPa, and the relative density of the sintered parts is 99.7%. The σ phases precipitate in the sintered parts during the furnace slow cooling process, significantly undermining the impact toughness. In contrast, the σ phases are dissolved completely after the solution treatment at 1035 ℃ for 1 h followed by the water quenching, leading to a notable increase in the impact toughness. A duplex structure of the α and γ phases is identified, which significantly affects the properties of the specimens. In detail, the volume ratio between the α and γ phases is 65:35, the tensile strength and yield strength of the specimens are 791 MPa and 586 MPa, respectively, the elongation is approximately 38%, and the impact absorbing energy is 236 J.

  • [1]
    Chail G, Kangas P. Super and hyper duplex stainless steels: structures, properties and applications. Procedia Struct Integrity, 2016, 2: 1755 DOI: 10.1016/j.prostr.2016.06.221
    [2]
    贾成厂, 况春江. 粉末冶金高氮不锈钢的发展历程. 金属世界, 2015(1): 23 DOI: 10.3969/j.issn.1000-6826.2015.01.08

    Jia C C, Kuang C J. Development of powder metallurgy high nitrogen stainless steels. Met World, 2015(1): 23 DOI: 10.3969/j.issn.1000-6826.2015.01.08
    [3]
    张志强, 荆洪阳, 徐连勇, 等. 铁素体/奥氏体双相不锈钢焊接接头组织和性能的研究进展. 材料热处理学报, 2020, 41(5): 13

    Zhang Z Q, Jing H Y, Xu L Y, et al. Research progress on microstructure and properties of welded joint of ferrite/austenite duplex stainless steel. Trans Mater Heat Treat, 2020, 41(5): 13
    [4]
    Xie X F, Li J W, Jiang W C, et al. Nonhomogeneous microstructure formation and its role on tensile and fatigue performance of duplex stainless steel 2205 multi-pass weld joints. Mater Sci Eng A, 2020, 786: 139426 DOI: 10.1016/j.msea.2020.139426
    [5]
    Li H, Zhou E, Zhang D, et al. Microbiologically influenced corrosion of 2707 hyper-duplex stainless steel by marine pseudomonas aeruginosa biofilm. Sci Rep, 2016, 6: 20190 DOI: 10.1038/srep20190
    [6]
    向红亮, 刘春育, 王永霞, 等. 含Cu抗菌双相不锈钢的空蚀行为研究. 特种铸造及有色合金, 2018, 38(8): 816

    Xiang H L, Liu C Y, Wang Y X, et al. Cavitation corrosion resistance of copper-bearing antibacterial duplex stainless steel. Spec Cast Nonferrous Alloys, 2018, 38(8): 816
    [7]
    齐美欢, 任淑彬, 张公桢, 等. 固溶处理对热等静压SAF3207的组织与性能影响. 粉末冶金技术, 2017, 35(5): 328

    Qi M H, Ren S B, Zhang G Z, et al. Effects of solution treatment on microstructure and mechanical properties of hot isostatic pressing SAF3207. Powder Metall Technol, 2017, 35(5): 328
    [8]
    Pan M M, Zhang X M, Chen P, et al. The effect of chemical composition and annealing condition on the microstructure and tensile properties of a resource-saving duplex stainless steel. Mater Sci Eng A, 2020, 788: 139540 DOI: 10.1016/j.msea.2020.139540
    [9]
    Holländer Pettersson N, Lindell D, Lindberg F, et al. Formation of chromium nitride and intragranular austenite in a super duplex stainless steel. Metall Mater Trans A, 2019, 50: 5594 DOI: 10.1007/s11661-019-05489-2
    [10]
    李静媛, 杨智辉. 超级双相不锈钢00Cr32Ni7Mo3.5N的热塑性及高温组织演变. 锻压技术, 2013, 38(6): 122

    Li J Y, Yang Z H. Thermo-plasticity and high-temperature microstructure evolution of hyper duplex stainless steel 00Cr32Ni7Mo3.5N. Forg Stamp Technol, 2013, 38(6): 122
    [11]
    何福善, 向红亮, 顾兴, 等. Cr32Ni7Mo3N特级双相不锈钢的空蚀行为. 工程科学学报, 2014, 36(8): 1060

    He F S, Xiang H L, Gu X, et al. Cavitation erosion behavior of Cr32Ni7Mo3N hyper duplex stainless steel. Chin J Eng, 2014, 36(8): 1060
    [12]
    Davidson K P, Singamneni S. Magnetic characterization of selective laser-melted S32750 duplex stainless steel. JOM, 2017, 69(3): 569 DOI: 10.1007/s11837-016-2193-6
    [13]
    Davidson K P, Singamneni S. Selective laser melting of duplex stainless steel powders: An investigation. Mater Manuf Process, 2016, 31(12): 1543 DOI: 10.1080/10426914.2015.1090605
    [14]
    Sotomayor M E, Cervera A, Várez A, et al. Duplex stainless steel self-ligating orthodontic brackets by micro-powder injection moulding. Int J Eng Res Sci, 2016, 2(4): 184
    [15]
    Zucato I, Moreira M, Machado I, et al. Microstructural characterization and the effect of phase transformations on toughness of the UNS S31803 duplex stainless steel aged treated at 850 ℃. Mater Res, 2002, 5(3): 385 DOI: 10.1590/S1516-14392002000300026
    [16]
    王晓峰. 00Cr25Ni7Mo4N超级双相不锈钢组织及性能的研究[学位论文]. 北京: 北京科技大学, 2009

    Wang X F. Research on Microstructures and Properties of 00Cr25Ni7Mo4N Super Duplex Stainless Steel [Dissertation]. Beijing: University of Science and Technology Beijing, 2009
    [17]
    李树健. 成分对00Cr25Ni7Mo3N双相不锈钢组织及性能的影响[学位论文]. 昆明: 昆明理工大学, 2011

    Li S J. The Effect of Content on Microstructure and Mechanical Properties of 00Cr25Ni7Mo3N Super Duplex Stainless Steel [Dissertation]. Kunming: Kunming University of Science and Technology, 2011
  • Related Articles

    [1]Effect of solution treatment on the microstructure and properties of UNS S32750 super duplex stainless steel prepared by selective laser melting[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2024110001
    [2]CAI Xiaoping, YIN Jinnan, ZHANG Zhipeng, FENG Peizhong. Reaction behavior, microstructure, and mechanical properties of FeAl-316 stainless steel joints[J]. Powder Metallurgy Technology, 2024, 42(2): 107-114. DOI: 10.19591/j.cnki.cn11-1974/tf.2021110009
    [3]Effects of Deoxidizing Elements Ti and La on the Microstructure and Mechanical Properties of Additively Manufactured Martensitic Stainless Steel[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2024060018
    [4]HU Jianbin, LIU Xiaojing, WANG Zhiyong, SHANG Feng, HE Yiqiang, YANG Jianming. Microstructure and properties of 316L/430 duplex stainless steels processed by selective laser melting[J]. Powder Metallurgy Technology, 2023, 41(4): 302-306. DOI: 10.19591/j.cnki.cn11-1974/tf.2021090007
    [5]LI Jie, LIU Wen-sheng, CAI Qing-shan, DUAN You-teng, ZHU Wen-tan, MA Yun-zhu. Effect of powder characteristics on microstructure and properties of 30CrMnSiNi2A steels[J]. Powder Metallurgy Technology, 2022, 40(5): 441-450. DOI: 10.19591/j.cnki.cn11-1974/tf.2022030015
    [6]WEI Zi-chen, ZHANG Lin, QIN Ming-li, LI Xing-yu, QUE Zhong-you, QU Xuan-hui. Effect of powder size on microstructure and mechanical properties of rhenium[J]. Powder Metallurgy Technology, 2021, 39(3): 196-202. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030014
    [7]WANG Xin-feng, HE Wei-wei, ZHU Ji-lei, XIANG Chang-shu. Microstructure and mechanical properties of Fe–Co–Ni based superalloy prepared by hot isostatic pressing[J]. Powder Metallurgy Technology, 2020, 38(5): 371-376, 390. DOI: 10.19591/j.cnki.cn11-1974/tf.2019060006
    [8]ZHANG Peng, WANG Zhi-yong, SHANG Feng, LI Hua-qiang, HE Yi-qiang. Effect of two phase mass ratio on the microstructure and mechanical properties of duplex stainless steel fabricated by powder metallurgy[J]. Powder Metallurgy Technology, 2020, 38(4): 269-274. DOI: 10.19591/j.cnki.cn11-1974/tf.2019060003
    [9]SUN Lu, ZHANG Ji-feng, QIU Tian-xu, SHEN Xiao-ping. Effect of forging temperature on microstructure and mechanical properties of powder hot-forged alloy contained molybdenum[J]. Powder Metallurgy Technology, 2020, 38(3): 174-182. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.03.002
    [10]Tong Guoquan, Wang Erde, He Shaoyuan. THE INFLUENCE OF THE BINDER COMPOSITION ON THE MICROSTRUCTURES AND MECHANICAL PROPERTIES OF WC-20(Fe/Co/Ni) CEMENTED CARBIDES[J]. Powder Metallurgy Technology, 1995, 13(4): 243-248.
  • Cited by

    Periodical cited type(0)

    Other cited types(3)

Catalog

    Article Metrics

    Article views (343) PDF downloads (80) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return