AdvancedSearch
BAO Kangxin, WANG Li, SUN Qi, JIAN Hanjie, LU Shuchao, ZHAO Liming, MAO Aiqin, ZHENG Cuihong. Effect of sodium silicaluminate on the properties of FeNi composite magnetic core[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2024060015
Citation: BAO Kangxin, WANG Li, SUN Qi, JIAN Hanjie, LU Shuchao, ZHAO Liming, MAO Aiqin, ZHENG Cuihong. Effect of sodium silicaluminate on the properties of FeNi composite magnetic core[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2024060015

Effect of sodium silicaluminate on the properties of FeNi composite magnetic core

More Information
  • Corresponding author:

    ZHENG Cuihong, E-mail: zhch@ahut.edu.cn

  • Received Date: June 19, 2024
  • Available Online: September 23, 2024
  • The Fe‒50%Ni magnetic powders (FeNi, mass fraction) derived from gas atomization first underwent the phosphatizing process, then were coated with the sodium aluminosilicate sol. Eventually, the metal composite magnetic cores were prepared through compacting process and nitrogen heat treatment by using the surface modified magnetic powders. The effect of coating agents on the properties of FeNi composite magnetic cores was studied. The results show that a uniform insulating coating layer of sodium silicaluminate nanoparticles is formed on the surface of FeNi magnetic powders, and the density and effective permeability of the composite magnetic powder cores decrease gradually with the increase of sodium silicaluminate addition. Proper addition of sodium silicaluminate can significantly reduce the power loss of magnetic cores. When the mass fraction of sodium silicaluinate is 0.5%, the effective permeability of the composite magnetic cores reaches the maximum value (122.4), and the DC superposition characteristic is 49.3% under the 100 Oe DC magnetization field. The power loss is 168.2 mW·cm‒3 under the test conditions of 50 kHz and 100 mT. Compared with the silicone coating agent, the composite magnetic cores coated with sodium aluminate silicate gel show the better permeability frequency stability, and the power loss is reduced.

  • [1]
    吕世雅, 况春江, 王磊, 等. 气水组合雾化制备不同粒径Fe−Si−B−Cr−C非晶合金粉末及性能研究. 粉末冶金技术, 2024, 42(6): 638

    Lü S Y, Kuang C J, Wang L, et al. Preparation and properties of Fe−Si−B−Cr−C amorphous alloy powders by air-water combination atomization with different particle sizes. Powder Metall Technol, 2024, 42(6): 638
    [2]
    Wang R, Huang H, Li K, et al. Design and evolution of Fe–Si–Al soft magnetic composites doped with carbonyl iron powders: Overcoming the restrictive relation between permeability and core loss. Ceram Int, 2024, 50(10): 17861 DOI: 10.1016/j.ceramint.2024.02.274
    [3]
    邱玥, 贺弋海, 王义富, 等. 热处理对Fe‒6.5%Si磁粉芯性能的影响. 粉末冶金技术, 2024, 42(2): 177

    Qiu Y, He Y H, Wang Y F, et al. Influence of heat treatment on performance of Fe−6.5%Si magnetic powder core. Powder Metall Technol, 2024, 42(2): 177
    [4]
    Zhang G, Shi G, Yuan W, et al. Magnetic properties of iron-based soft magnetic composites prepared via phytic acid surface treatment. Ceram Int, 2021, 47(7): 8795 DOI: 10.1016/j.ceramint.2020.11.245
    [5]
    王亚娜, 江志滨, 纪杰, 等. 具有超高磁导率的铁基非晶磁粉芯的制备方法: 中国专利, CN103730224B. 2016-07-06

    Wang Y N, Jiang Z B, Ji J, et al. Preparation Method of Iron-Based Amorphous Magnetic Powder Cores with Ultra-High Magnetic Permeability: China Patent, CN103730224B. 2016-07-06
    [6]
    Lu H, Dong Y Q, Liu X C, et al. Enhanced magnetic properties of FeSiAl soft magnetic composites prepared by utilizing phosphate: PSA as insulating layer. J Mater Sci Mater Electron, 2022, 33(13): 10131 DOI: 10.1007/s10854-022-08003-4
    [7]
    Xie D Z, Lin K H, Lin S T. Effects of processed parameters on the magnetic performance of a powder magnetic core. J Magn Magn Mater, 2014, 353: 34 DOI: 10.1016/j.jmmm.2013.10.014
    [8]
    林坤, 熊亚东, 严密, 等. 铁硅铝磁粉芯的绝缘包覆研究. 稀有金属材料与工程, 2014, 43(5): 1262

    Lin K, Xiong Y D, Yan M, et al. Investigation of coating process of Fe‒Si‒Al powder core. Rare Met Mater Eng, 2014, 43(5): 1262
    [9]
    Hsiang H I, Fan L F, Hung J J. Phosphoric acid addition effect on the microstructure and magnetic properties of iron-based soft magnetic composites. J Magn Magn Mater, 2018, 447(2): 1
    [10]
    Chen D, Li K, Yu H, et al. Effects of secondary particle size distribution on the magnetic properties of carbonyl iron powder cores. J Magn Magn Mater, 2020, 497: 166062 DOI: 10.1016/j.jmmm.2019.166062
    [11]
    徐涛涛, 张博玮, 关婉婉, 等. 细粉对气雾化铁硅铝软磁粉芯磁性能的影响. 功能材料, 2020, 51(9): 9098 DOI: 10.3969/j.issn.1001-9731.2020.09.014

    Xu T T, Zhang B W, Guan W W, et al. The influence of fine powder on the magnetic properties of aerosolized iron silicon aluminum soft magnetic powder cores. J Funct Mater, 2020, 51(9): 9098 DOI: 10.3969/j.issn.1001-9731.2020.09.014
    [12]
    Liu D H, Liu X, Wang J. The influence of Fe nanoparticles on microstructure and magnetic properties of Fe‒6.5wt%Si soft magnetic composites. J Alloys Compd, 2020, 835: 1
    [13]
    陆曹卫, 卢志超, 孙克, 等. 水雾化制备Fe74Al4Sn2P10C2B4Si4非晶合金粉末及其磁粉芯性能研究. 物理学报, 2006(5): 2553 DOI: 10.3321/j.issn:1000-3290.2006.05.075

    Lu C W, Lu Z C, Sun K, et al. Magnetic properties of amorphous Fe74Al4Sn2P10C2B4Si4 powder prepared by water atomization and powder core made from it. J Phys, 2006(5): 2553 DOI: 10.3321/j.issn:1000-3290.2006.05.075
    [14]
    冯端. 固体物理学大辞典. 北京: 高等教育出版社, 1995

    Feng R. A Dictionary of Solid State Physics. Beijing: Higher Education Press, 1995
    [15]
    Xia C, Peng Y D, Yi X W, et al. Improved magnetic properties of FeSiCr amorphous soft magnetic composites by adding carbonyl iron powder. J Non-Cryst Solids, 2021, 559: 120673 DOI: 10.1016/j.jnoncrysol.2021.120673
    [16]
    Gu M Y, Zheng W, Li Z Z, et al. Effect of annealing process on magnetic properties of Fe80Co3Si3B10P1C3 amorphous alloy magnetic cores. J Mater Sci Mater Electron, 2023, 34(18): 1396 DOI: 10.1007/s10854-023-10808-w
    [17]
    Zhu S J, Duan F, Feng S J, et al. Highly efficient inorganic-coated FeSiAl/biotite soft magnetic composites. J Mater Res Technol, 2022, 21: 3617 DOI: 10.1016/j.jmrt.2022.11.004
    [18]
    刘亚丕, 石康, 石凯鸣, 等. 软磁磁粉芯和烧结软磁材料: 结构, 性能, 特点和应用. 磁性材料及器件, 2022, 53(4): 112

    Liu Y P, Shi K, Shi K M, et al. Soft magnetic powder core and sintered soft magnetic materials: the structure, property, characteristic and applications. J Magn Mater Dev, 2022, 53(4): 112
  • Related Articles

    [1]YANG Guang, LI Gemin, WEI Bangzheng, XU Dang, CHEN Pengqi, CHENG Jigui. Preparation and sintering behavior of ultrafine Cu–20W composite powders by sol–gel with hydrogen reduction technology[J]. Powder Metallurgy Technology, 2025, 43(1): 12-19. DOI: 10.19591/j.cnki.cn11-1974/tf.2023050001
    [2]ZHANG Yong, ZHANG Guo-Hua, CHOU Kuo-Chih. Preparation of ultrafine Mo powders by MoO3 pre-reduction with insufficient carbon and hydrogen deep reduction[J]. Powder Metallurgy Technology, 2021, 39(4): 339-344. DOI: 10.19591/j.cnki.cn11-1974/tf.2021010010
    [3]La Peiqing, Han Shaobo, Lu Xuefeng, Ju Qian, Wei Yupeng. Study of the influence of different stoichometry of Mg in starting mixture on particle size and purity of ZrB2 powder prepared by combustion synthesis[J]. Powder Metallurgy Technology, 2013, 31(1): 3-8,13. DOI: 10.3969/j.issn.1001-3784.2013.01.001
    [4]Tian Ding, Zhao Yanmin, Wu Xiaolin, Wang Xiuhui, Gao Hong, Zhai Yuchun. The preparation techniques of lanthanum aluminate ultra-fine powders[J]. Powder Metallurgy Technology, 2009, 27(5): 377-380.
    [5]Sun Weimin, Jin Shouri, Yu Ying. PREPARATION AND CHARACTERIZATION OF Ni-TiN ULTRAFINE POWDER[J]. Powder Metallurgy Technology, 2000, 18(3): 183-186.
    [6]Sun Weimin, Jin Shouri. Continuous Production of Ultrafine Iron Powder[J]. Powder Metallurgy Technology, 1997, 15(3): 199-202.
    [7]Zheng Jie, Lü Zhenhe, Gan Zhangyan. DEVELOPMENT TO SUPERIOR QUALITY ULTRAFINE PALLADIUM POWDER[J]. Powder Metallurgy Technology, 1995, 13(2): 112-115.
    [8]Zhong Junhui. MANUFACTURE PROCESS OF NANOMETER POWDER[J]. Powder Metallurgy Technology, 1995, 13(1): 48-56.
    [9]Ge Rongde, Zhao Tiancong, Liu Zhihong, Chen Huiguang, Zhang Duomo. APPLICATION OF A NEW AGGLOMERATION PARAMETER IN CHARACTERIZING THE STATE OF AGGLOMERATION OF ULTRAFINE ZIRCONIA POWDERS[J]. Powder Metallurgy Technology, 1994, 12(2): 87-90.
    [10]Xu Mingxia, Guo Ruisong, Yang Zhengfang, Shi Guoshun. SURFACE MODIFICATION OF ULTRAFINE CERAMIC POWDERS[J]. Powder Metallurgy Technology, 1993, 11(1): 19-24.
  • Cited by

    Periodical cited type(4)

    1. 荣智峥,高阳,张朔,马佳俊,孙德建. 球磨时间及热处理工艺对6061铝合金组织与性能的影响. 材料工程. 2023(10): 136-145 .
    2. 韩国强,王玮玮,李晓艳. 粉末烧结对Mg-Sc合金微观组织和力学性能的影响. 粉末冶金技术. 2023(06): 548-553 . 本站查看
    3. 余聪,陈乐平,周全. 稀土元素对铝合金组织与性能影响的研究进展. 特种铸造及有色合金. 2021(02): 241-246 .
    4. 郭江,李荣,牛海云. 铈对6063铝合金组织和综合性能的影响. 中国稀土学报. 2021(02): 275-281 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (57) PDF downloads (18) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return