AdvancedSearch
Guo Shiju, Lin Tao, Li Mingyi. SINTERING BEHAVIOR OF WARM-COMPACTED GREEN COMPACTS[J]. Powder Metallurgy Technology, 1999, 17(2): 107-110.
Citation: Guo Shiju, Lin Tao, Li Mingyi. SINTERING BEHAVIOR OF WARM-COMPACTED GREEN COMPACTS[J]. Powder Metallurgy Technology, 1999, 17(2): 107-110.

SINTERING BEHAVIOR OF WARM-COMPACTED GREEN COMPACTS

More Information
  • Received Date: November 19, 1998
  • Available Online: July 19, 2021
  • Vacuum sintering and sintering in hydrogen atmosphere of warm-compacted green compacts has been studied.During compacting of iron powders, the temperature of iron powders was 110℃, the temperature of the die tool was 80~100℃. During sintering, the green compacts were loaded at the room temperature, the heating up rate was 2. 5℃/min.The sintering temperatures were 1100, 1150 and 1250℃ respectively. Experimental results show that sintering densities of all compacts decrease after sintering at all given temperature for 1h in vacuum or in hydrogen atmosphere. Variations of weight and volume of the compacts after sintering and the final sintered densities through pre-sintering were measured,finding that high temperature sintering at 1250℃ with pre-sintering can effectively enhance the final sintering densities of the green compacts. The present study indicates that the density value of sintered iron is consequent results of the combination effect of warm-compacting and sintering. One of two processing may lead to the variation in the final density of the compacts. And although warm compaction may increase the density of the green compact, the sintering behavior of warm-compacted green compacts should be taken into account for optimizing the temperature and specification of warm-compaction.
  • Related Articles

    [1]MU Jianghan, LIU Shumei, LI Dajie, YANG Hangzhou, ZHOU Haitao. Deformation of Fe2Ni prepared by metal powder injection molding[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2023070001;https://pmt.ustb.edu.cn
    [2]HOU Cheng-long, GUO Jun-qing, CHEN Fu-xiao, HUANG Tao. Metal powder injection molding technology and numerical simulation[J]. Powder Metallurgy Technology, 2022, 40(1): 72-79. DOI: 10.19591/j.cnki.cn11-1974/tf.2020120007
    [3]SUN Si-heng, SUN Yan, JIA Cun-feng, WANG Hui-jie, FANG Yun-feng, PANG Lei. Study on the explosion sensitivity of metal powders used in additive manufacturing[J]. Powder Metallurgy Technology, 2020, 38(4): 249-256. DOI: 10.19591/j.cnki.cn11-1974/tf.2020010009
    [4]ZHUANG Tian-ya, ZHANG Ji-liang, WANG Fei, ZHANG Sai-sai, HUANG Yi-bin. Research progress on the microwave sintering mechanism of metal powders[J]. Powder Metallurgy Technology, 2019, 37(5): 392-398. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.05.011
    [5]LIN Li, LIU Jun, ZHOU Chun, HU Hai-feng. Optimization analysis of die mass and particle model in metal powder impact compaction[J]. Powder Metallurgy Technology, 2018, 36(3): 182-189. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.03.004
    [6]Xiang Qingchun, Zhou Bide, Li Rongde. DEVELOPMENTS OF RAPID SOLIDIFICATION TECHNIQUES FOR METAL POWDER PRODUCTION[J]. Powder Metallurgy Technology, 2000, 18(4): 283-291.
    [7]Li Mingyi, Guo Shiju, Kang Zhijun, Lin Tao. WARM COMPACTION BEHAVIOR OF VARIOUS METAL POWDERS[J]. Powder Metallurgy Technology, 2000, 18(4): 261-264.
    [8]Qu Xuanhui, Yan Hansong, Huang Baiyun. Development of Binders for Metal Powder Injection Molding[J]. Powder Metallurgy Technology, 1997, 15(1): 61-65.
    [9]Li Qingquan, Ouyang Tong, Ma Runhai, Tong Lirong, Han Yanliang, Lin Gang. Research of Producing procedure of Fine Metal Powder by gas Atomization[J]. Powder Metallurgy Technology, 1996, 14(3): 181-188.
    [10]Dong Jianzhong. STUDY OF BAKING METAL POWDER METHODS[J]. Powder Metallurgy Technology, 1990, 8(4): 213-215.

Catalog

    Article Metrics

    Article views (283) PDF downloads (10) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return