AdvanceSearch
Volume 36 Issue 4
Dec.  2020
Turn off MathJax
Article Contents
ZHANG Gui-yin, ZHA Wu-sheng, CHEN Xiu-li, YAN Jun. Application of mechanical ball-milling technology in material preparation[J]. Powder Metallurgy Technology, 2018, 36(4): 315-318. doi: 10.19591/j.cnki.cn11-1974/tf.2018.04.013
Citation: ZHANG Gui-yin, ZHA Wu-sheng, CHEN Xiu-li, YAN Jun. Application of mechanical ball-milling technology in material preparation[J]. Powder Metallurgy Technology, 2018, 36(4): 315-318. doi: 10.19591/j.cnki.cn11-1974/tf.2018.04.013

Application of mechanical ball-milling technology in material preparation

doi: 10.19591/j.cnki.cn11-1974/tf.2018.04.013
More Information
  • Corresponding author: ZHA Wu-sheng, E-mail: 1434758301@qq.com
  • Received Date: 2018-02-25
  • Publish Date: 2018-08-27
  • The application and mechanism of mechanical ball-milling technology in material preparation, containing mechanical alloying, mechanical milling, and mechanical coating, were summarized in this paper. The advantages and disadvantages of mechanical ball-milling technology in material preparation were discussed. Based on the previous researches, the future direction of mechanical ball-milling technology was prospected.
  • loading
  • [1]
    Benjamin J S. Dispersion strengthened superalloys by mechanical alloying. Metall Trans, 1970, 1(10): 2934 https://ui.adsabs.harvard.edu/abs/1970MT......1.2943B/abstract
    [2]
    Atzmon M. In situ thermal observation of explosive compound-formation reaction during mechanical alloying. Phys Rev Lett, 1990, 64(4): 487 doi: 10.1103/PhysRevLett.64.487
    [3]
    张先胜, 冉广. 机械合金化的反应机制研究进展. 金属热处理, 2003, 28(6): 28 doi: 10.3969/j.issn.0254-6051.2003.06.009

    Zhang X S, Ran G. Review of the reactive mechanism in mechanical alloying. Heat Treat Met, 2003, 28(6): 28 doi: 10.3969/j.issn.0254-6051.2003.06.009
    [4]
    Zaluski L, Zaluska A, Strom-Olsen J O. Hydrogen absorption in nanocrystalline Mg2Ni formed by mechanical alloying. J Alloys Compd, 1995, 217(2): 245 doi: 10.1016/0925-8388(94)01348-9
    [5]
    Liang G X, Huot J, Boily S, et al. Hydrogin storage in mechanically milled Mg–LaNi5 and MgH2–LaNi5 composites. J Alloys Compd, 2000, 297(1-2): 261 doi: 10.1016/S0925-8388(99)00592-7
    [6]
    徐安莲, 刘守平, 周上祺, 等. 机械合金化的研究进展. 重庆大学学报, 2005, 28(11): 84 doi: 10.11835/j.issn.1000-582X.2005.11.023

    Xu A L, Liu S P, Zhou S Q, et al. Progress in studies on mechanical alloying, J Chongqing Univ, 2005, 28(11): 84 doi: 10.11835/j.issn.1000-582X.2005.11.023
    [7]
    Ivanov E, Griqorieva T, Golubkova G, et al. Synthesis of nickel aluminides by mechanical alloying. Mater Lett, 1988, 7(1-2): 51 doi: 10.1016/0167-577X(88)90081-X
    [8]
    李宁, 耿刚强, 张海宝, 等. 机械合金化–退火法制备铁硅金属间化合物. 热加工工艺, 2005(8): 21 doi: 10.3969/j.issn.1001-3814.2005.08.009

    Li N, Geng G Q, Zhang H B, et al. Fe–Si intermetallics fabricated by mechanical alloying and annealing treatment. Hot Work Technol, 2005(8): 21 doi: 10.3969/j.issn.1001-3814.2005.08.009
    [9]
    Koch C C. The synthesis and structure of nanocrystalline materials produced by mechanical attrition: A review. Nanostruct Mater, 1993, 2(2): 109 doi: 10.1016/0965-9773(93)90016-5
    [10]
    Eckert J, Schultz L, Urban K. Formation of quasicrystals by mechanical alloying. Appl Phys Lett, 1989, 55(2): 117 doi: 10.1063/1.102394
    [11]
    卡恩R W. 材料科学与技术丛书: 金属与合金工艺. 北京: 科学出版社, 1999

    Kahn R W. Materials Science and Technology Series: Metal and Alloy Technology. Beijing: Science Press, 1999
    [12]
    陶静梅, 黄素贞, 徐孟春, 等. 纯Al纳米晶体材料的力学性能研究. 材料工程, 2009(6): 67 doi: 10.3969/j.issn.1001-4381.2009.06.016

    Tao J M, Huang S Z, Xu M C, et al. Study on the mechanical properties of pure bulk Al with nanocrystalline. J Mater Eng, 2009(6): 67 doi: 10.3969/j.issn.1001-4381.2009.06.016
    [13]
    Zhang X, Wang H, Scatterergood R O, et al. Evolution of microstructure and mechanical properties of in situ consolidated bulk ultra-fine-grained and nanocrystalline Zn prepared by ball milling. Mater Sci Eng A, 2003, 344(1-2): 175 doi: 10.1016/S0921-5093(02)00422-7
    [14]
    Bonetti E, Pasquini L, Sampaolesi E. The influence of grain size on the mechanical properties of nanocrystalline aluminum. Nanostruct Mater, 1997, 9(1-8): 611 doi: 10.1016/S0965-9773(97)00137-2
    [15]
    Hayes R W, Witkin D, Zhou F, et al. Deformation and activation volumes of cryomilled ultrafine-grained aluminum. Acta Mater, 2004, 52(14): 4259 doi: 10.1016/j.actamat.2004.05.042
    [16]
    韩宝军, 何琼, 杨妙. 机械研磨处理AZ91D镁合金表面晶粒细化研究. 表面技术, 2014, 43(4): 32 https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS201404007.htm

    Han B J, He Q, Yang M. Investigation of surface grain refinement of AZ91D magnesium alloys by surface mechanical attrition treatment. Surf Technol, 2014, 43(4): 32 https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS201404007.htm
    [17]
    Hao L, Lu Y, Sato H, et al. Influence of metal properties on the formation and evolution of metal coatings during mechanical coating. Metall Mater Trans A, 2013, 44(6): 2717 doi: 10.1007/s11661-013-1632-z
    [18]
    Tang X, Zha W S, Zhang G Y, et al. The effects of oxidation temperature on the microstructure and photocatalytic activity of the TiO2 coating. Mater Sci, 2017, 23(2): 103 https://matsc.ktu.lt/index.php/MatSc/article/view/15590
    [19]
    沈以赴, 李永灿, 陈成, 等. Al2O3陶瓷表面机械合金化制备铜涂层研究. 南京航空航天大学学报, 2012, 44(5): 762 doi: 10.3969/j.issn.1005-2615.2012.05.024

    Shen Y F, Li Y C, Chen C, et al. Investigation of coating of alumina ceramic surface by metallic Cu through mechanical alloying. J Nanjing Univ Aeronaut Astronaut, 2012, 44(5): 762 doi: 10.3969/j.issn.1005-2615.2012.05.024
    [20]
    Wang A P, Wang Z M, Zhang J, et al. Deposition of HVAF-sprayed Ni-based amorphous metallic coatings. J Alloys Compd, 2007, 440(1-2): 225 doi: 10.1016/j.jallcom.2006.09.003
    [21]
    丁润东, 沈以赴, 李博, 等. 机械合金化制备Ti–Cu非晶涂层. 中国有色金属学报, 2012, 22(7): 2023 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201207024.htm

    Ding R D, Shen Y F, Li B, et al. Preparation of amorphous Ti–Cu coating by mechanical alloying. Chin J Nonferrous Met, 2012, 22(7): 2023 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201207024.htm
    [22]
    Ding D, Zhou B, Fu W Y, et al. Varied crystalline orientation of anatase TiO2 nanotubes from[101] to[001] promoted by TiF62- ions and their enhanced photoelectrochemical performance. J Mater Sci, 2018, 53(5): 3332 doi: 10.1007/s10853-017-1754-6
    [23]
    Seadira T W P, Sadanandam G, Ntho T, et al. Preparation and characterization of metals supported on nanostructured TiO2 hollow spheres for production of hydrogen via photocatalytic reforming of glycerol. Appl Catal B, 2018, 222: 133 doi: 10.1016/j.apcatb.2017.09.072
    [24]
    Deng X Y, Zhang H X, Guo R N, et al. Effect of Ti3+ on enhancing photocatalytic and photoelectrochemical properties of TiO2 nanorods/nanosheets photoelectrode. Sep Purif Technol, 2018, 192: 329 doi: 10.1016/j.seppur.2017.10.029
    [25]
    Yoshida H, Lu Y, Nakayama H, et al. Fabrication of TiO2 film by mechanical coating technique and its photocatalytic activity. J Alloys Compd, 2009, 475(1): 383 https://www.sciencedirect.com/science/article/pii/S092583880801147X
    [26]
    Takaya S, Lu Y, Guan S J, et al. Fabrication of the photocatalyst thin films of nano-structured potassium titanate by molten salt treatment and its photocatalytic activity. Surf Coat Technol, 2015, 275: 260 doi: 10.1016/j.surfcoat.2015.05.009
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(505) PDF Downloads(69) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return