AdvanceSearch
Volume 42 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
HE Xuemin, WANG Guishan, LI Yinghong, SHI Meijuan. Pitting corrosion behavior of pure copper components in EHV/UHV DC transmission environment[J]. Powder Metallurgy Technology, 2024, 42(1): 91-96. doi: 10.19591/j.cnki.cn11-1974/tf.2020110003
Citation: HE Xuemin, WANG Guishan, LI Yinghong, SHI Meijuan. Pitting corrosion behavior of pure copper components in EHV/UHV DC transmission environment[J]. Powder Metallurgy Technology, 2024, 42(1): 91-96. doi: 10.19591/j.cnki.cn11-1974/tf.2020110003

Pitting corrosion behavior of pure copper components in EHV/UHV DC transmission environment

doi: 10.19591/j.cnki.cn11-1974/tf.2020110003
More Information
  • Corresponding author: E-mail: 541580876@qq.com
  • Received Date: 2021-01-04
  • Publish Date: 2024-02-28
  • EHV/UHV power transmission is the core technology to realize the global energy interconnection. As the most widely used conductor materials in power transmission system, the corrosion resistance of copper and copper alloys has been paid more attention. In the process of EHV/UHV DC transmission, there is a large magnetic field in the surrounding environment, which leads to the service environment of the copper components different from that of the ordinary transmission environment. The electrochemical corrosion behavior of the pure copper under the EHV/UHV environment was studied by potential polarization, electrochemical impedance spectroscopy, and element analysis in this paper. The results show that, the limiting diffusion current of the pure copper in 3.5% NaCl solution (mass fraction) under the UHV/UHV environment is larger than that without magnetic field, and the reaction resistance without magnetic field is significantly increased compared with that under 0.1 T magnetic. Combined with the results of electrochemical impedance spectroscopy, X-ray diffraction, and elemental analysis, it is shown that the high-intensity magnetic field (0.1 T) can reduce the corrosion resistance of the pure copper, and the main corrosion product is Cu2O.
  • loading
  • [1]
    常浩, 樊纪超. 特高压直流输电系统成套设计及其国产化. 电网技术, 2006, 30(16): 1 doi: 10.3321/j.issn:1000-3673.2006.16.001

    Chang H, Fan J C. System design and its localization of UHVDC transmission project. Power Syst Technol, 2006, 30(16): 1 doi: 10.3321/j.issn:1000-3673.2006.16.001
    [2]
    何慈武, 刘鹏华. 特高压直流输电技术的应用探究. 科技创新与应用, 2020(20): 177

    He C W, Liu P H. Application of UHVDC transmission technology. Technol Innov Appl, 2020(20): 177
    [3]
    Zhao X L, Liu Y, Wu J W, et al. Technical and economic demands of HVDC submarine cable technology for Global Energy Interconnection. Wire J Int, 2021, 54(3): 62
    [4]
    王宏韬. 特高压直流输电线路保护新原理研究. 电子测试, 2016(24): 51 doi: 10.3969/j.issn.1000-8519.2016.24.030

    Wang H T. Study on new protection principle of UHV DC transmission line. Electron Test, 2016(24): 51 doi: 10.3969/j.issn.1000-8519.2016.24.030
    [5]
    Du X Q, Yang Q S, Chen Y, et al. Galvanic corrosion behavior of copper/titanium galvanic couple in artificial seawater. Trans Nonferrous Met Soc China, 2014, 24(2): 570 doi: 10.1016/S1003-6326(14)63097-1
    [6]
    Van Ingelgem Y, Tourwe E, Vereecken J, et al. Application of multisine impedance spectroscopy, FE-AES and FE-SEM to study the early stages of copper corrosion. Electrochim Acta, 2008, 53(25): 7523 doi: 10.1016/j.electacta.2008.01.052
    [7]
    吴恒, 董彩常, 丁国清, 等. 铜合金在一级反渗透海水中的耐蚀性对比研究. 装备环境工程, 2020, 17(6): 72

    Wu H, Dong C C, Ding G Q, et al. Corrosion resistance of three kinds of copper alloys in first-class reverse osmosis seawater. Equip Environ Eng, 2020, 17(6): 72
    [8]
    冯秋洁. 铜、锌及其合金的电化学腐蚀研究[学位论文]. 武汉: 华中科技大学, 2015

    Feng Q J. Study of Electrochemical Corrosion Behaviors of Copper, Zinc and Their Alloy [Dissertation]. Wuhan: Huazhong University of Science and Technology, 2015
    [9]
    Song Q N, Tong Y, Xu N, et al. Synergistic effect between cavitation erosion and corrosion for various copper alloys in sulphide-containing 3.5% NaCl solutions. Wear, 2020, 450-451: 203258
    [10]
    Luo J Q, Hein C, Pierson J F, et al. Localised corrosion attacks and oxide growth on copper in phosphate-buffered saline. Mater Charact, 2019, 158: 109985 doi: 10.1016/j.matchar.2019.109985
    [11]
    Guo D, Kwok C T. Effect of pH on the corrosion behavior of tungsten-copper alloys. Corros Sci, 2020, 177: 108994 doi: 10.1016/j.corsci.2020.108994
    [12]
    Zhang X, Wang Z H, Zhou Z H, et al. Impact of magnetic field on corrosion performance of Al–Mg alloy with different electrode potential phases. Intermetallics, 2021, 129: 107037 doi: 10.1016/j.intermet.2020.107037
    [13]
    Wang J R, Bai Z H, Xiao K, et al. Effect of static magnetic field on mold corrosion of printed circuit boards. Bioelectrochemistry, 2020, 131: 107394 doi: 10.1016/j.bioelechem.2019.107394
    [14]
    付焱燚, 徐溧, 阴酉龙, 等. ±800 kV直流输电线路电磁场环境分析. 黑龙江电力, 2014, 36(2): 118 doi: 10.3969/j.issn.1002-1663.2014.02.006

    Fu Y Y, Xu L, Yin Y L, et al. Analysis of electromagnetic environment of ±800 kV DC transmission lines. Heilongjiang Electr Power, 2014, 36(2): 118 doi: 10.3969/j.issn.1002-1663.2014.02.006
    [15]
    侯立伟. 特高压直流输电线路电磁环境安全评估[学位论文]. 兰州: 兰州交通大学, 2017

    Hou L W. Safety Assessment of Electromagnetic Environment for UHVDC Transmission Lines [Dissertation]. Lanzhou: Lanzhou Jiaotong University, 2017
    [16]
    Hulett L D, Bacarella A L, LiDonnici L, et al. Analysis of protective oxide films on copper—nickel alloys by photoelectron spectroscopy. J Electron Spectrosc Relat Phenom, 1972, 1(2): 169
    [17]
    陈散兴, 樊栋, 张三平. 磁场对电化学腐蚀行为的影响. 材料保护, 2015, 48(9): 31

    Chen S X, Fan D, Zhang S P. Effects of magnetic field on electrochemical corrosion behavior. Mater Prot, 2015, 48(9): 31
    [18]
    Hu J, Dong C F, Li X G, et al. Effects of applied magnetic field on corrosion of beryllium copper in NaCl solution. J Mater Sci Technol, 2010, 26(4): 355 doi: 10.1016/S1005-0302(10)60058-8
    [19]
    O'Brien R N, Santhanam K S V. Electrochemical hydrodynamics in a magnetic field with laser interferometry. Electroch Acta, 1987, 32(12): 1679 doi: 10.1016/0013-4686(87)80003-8
    [20]
    Cheng J, Pan J S, Wang T Q, et al. Micro-galvanic corrosion of Cu/Ru couple in potassium periodate (KIO4) solution. Corros Sci, 2018, 137: 184 doi: 10.1016/j.corsci.2018.03.045
    [21]
    Zou S W, Li X G, Dong C F, et al. Electrochemical migration, whisker formation, and corrosion behavior of printed circuit board under wet H2S environment. Electrochim Acta, 2013, 114: 363 doi: 10.1016/j.electacta.2013.10.051
    [22]
    Guo B, Zhang P, Jin Y P, et al. Effects of alternating magnetic field on the corrosion rate and corrosion products of copper. Rare Met, 2008, 27(3): 324 doi: 10.1016/S1001-0521(08)60138-2
    [23]
    Kear G, Barker B D, Walsh F C. Electrochemical corrosion of unalloyed copper in chloride media—a critical review. Corros Sci, 2004, 46(1): 109 doi: 10.1016/S0010-938X(02)00257-3
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article Views(1552) PDF Downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return