AdvanceSearch
Volume 40 Issue 1
Feb.  2022
Turn off MathJax
Article Contents
MA Qing-yuan, DU Pei-nan, PENG Ying-bo, ZHANG Rui-qian, ZHANG Wei. Application and development of metal additive manufacturing technology in the field of nuclear industry[J]. Powder Metallurgy Technology, 2022, 40(1): 86-94. doi: 10.19591/j.cnki.cn11-1974/tf.2020110005
Citation: MA Qing-yuan, DU Pei-nan, PENG Ying-bo, ZHANG Rui-qian, ZHANG Wei. Application and development of metal additive manufacturing technology in the field of nuclear industry[J]. Powder Metallurgy Technology, 2022, 40(1): 86-94. doi: 10.19591/j.cnki.cn11-1974/tf.2020110005

Application and development of metal additive manufacturing technology in the field of nuclear industry

doi: 10.19591/j.cnki.cn11-1974/tf.2020110005
More Information
  • Corresponding author: E-mail: waycsu@csu.edu.cn
  • Received Date: 2020-11-04
  • Publish Date: 2022-02-28
  • Additive manufacturing can produce the arbitrary complex shape parts, which has the advantages of fast, efficient, economical, fully intelligent, and fully flexible manufacturing. Based on the introduction of the typical metal additive manufacturing technology at home and abroad, the application of the metal additive manufacturing technology in the field of nuclear industry was overviewed in this paper, the performance of nuclear material products prepared by the additive manufacturing was summarized, and the advantages of the metal additive manufacturing in the field of nuclear industry were proved by the practical cases. At the same time, the development trend of the additive manufacturing technology in the field of nuclear materials was forecasted based on the application background of the innovative reactor technology for the nuclear materials.
  • loading
  • [1]
    赵飞云, 贺小明, 王煦嘉, 等. 3D打印技术对核电设计与制造影响的基本思考. 机械设计与研究, 2016, 32(1): 88

    Zhao F Y, He X M, Wang X J, et al. The basic discussion on 3D printing technology for nuclear power design and manufacture. Mach Des Res, 2016, 32(1): 88
    [2]
    Yang J L. Selective laser melting additive manufacturing of advanced nuclear materials V–6Cr–6Ti. Mater Lett, 2017, 209: 268 doi: 10.1016/j.matlet.2017.08.014
    [3]
    Yang J L, Li J F. Fabrication and analysis of vanadium-based metal powders for selective laser melting. J Miner Mater Charact Eng, 2018, 6: 50
    [4]
    Zhong Y, Liu L F, Wikman S, et al. Intragranular cellular segregation network structure strengthening 316L stainless steel prepared by selective laser melting. J Nucl Mater, 2016, 470: 170 doi: 10.1016/j.jnucmat.2015.12.034
    [5]
    马晨璐. 欧洲采用电弧增材制造工艺成功制造空间探索钛压力容器. 中国钛业, 2019(2): 37

    Ma C L. Titanium pressure vessel for space exploration built successfully using the wire + arc additive manufacturing process. China Titanium Ind, 2019(2): 37
    [6]
    袁宏, 何戈宁, 李磊, 等. 3D打印技术在核电领域的发展应用情况综述. 科技视界, 2020(17): 118

    Yuan H, He G N, Li L, et al. Overview of the development and application of 3D printing technology in the field of nuclear power. Sci Technol Vision, 2020(17): 118
    [7]
    张亚斌. 3D打印谱写小堆传奇—模块式小型堆压力容器筒体3D打印试件研发小记. 中国核工业, 2016(12): 22

    Zhang Y B. 3D printing composes the legend of small reactor—notes on the development of 3D printed specimens of modular small reactor pressure vessel cylinders. China Nucl Ind, 2016(12): 22
    [8]
    Andreasch W, Huber R, Mock D. Two concentric fiber diameters in one laser light cable. Laser Tech J, 2011, 8(1): 38 doi: 10.1002/latj.201090106
    [9]
    Schopphoven T, Pirch N, Mann S, et al. Statistical/numerical model of the powder-gas jet for extreme high-speed laser material deposition. Coatings, 2020, 10(4): 416 doi: 10.3390/coatings10040416
    [10]
    王彬, 张述泉, 王华明. 激光熔化沉积高温钛合金Ti60快速凝固组织. 材料热处理学报, 2008, 29(6): 86

    Wang B, Zhang S Q, Wang H M. Rapidly solidified microstructure of Ti60 alloy produced by laser rapid forming process. Trans Mater Heat Treat, 2008, 29(6): 86
    [11]
    张文弟, 刘炜晨. 领跑光制造4.0时代. 天津: 滨海时报, 2018

    Zhang W D, Liu W C. Leading the Light Manufacturing 4.0 Era. Tianjin: Binhai Times, 2018
    [12]
    Gradl P R, Protz C, Fikes J, et al. Lightweight thrust chamber assemblies using multi-alloy additive manufacturing and composite overwrap // AIAA Propulsion and Energy 2020 Forum. Online, 2020: 3787
    [13]
    3D Science Valley. 金属3D打印: 激光熔化与喷射技术—优点和局限[J/OL]. 3D Science Valley [2017-11-24]. http://www.3dsciencevalley.com/?p=10707,2017/11/24

    3D Science Valley. Metal 3D printing: laser melting and jetting technology-advantages and limitations[J/OL]. 3D Science Valley [2017-11-24]. http://www.3dsciencevalley.com/?p=10707,2017/11/24
    [14]
    任慧娇, 周冠男, 从保强, 等. 增材制造技术在航空航天金属构件领域的发展及应用. 航空制造技术, 2020, 63(10): 72

    Ren H J, Zhou G N, Cong B Q, et al. Development and application of metal additive manufacturing in aerospace field. Aeronaut Manuf Technol, 2020, 63(10): 72
    [15]
    陈君, 康凯, 冯钜, 等. 压水堆核电站结构材料的腐蚀行为研究进展. 西华大学学报(自然科学版), 2020, 39(3): 104 doi: 10.12198/j.issn.1673-159X.3616

    Chen J, Kang K, Feng J, et al. Research progress on the corrosion behavior of structural steels of pressurized water reactor nuclear power plant. J Xihua Univ Nat Sci, 2020, 39(3): 104 doi: 10.12198/j.issn.1673-159X.3616
    [16]
    陈兴江, 刘彦章, 张峰. 基于3D打印技术的主泵试验用叶轮研制. 机械设计与制造, 2017(增刊1): 67

    Chen X J, Liu Y Z, Zhang F. Research and manufacturer of reactor coolant pump testing impeller based on 3D printing technology. Mach Des Manuf, 2017(Suppl 1): 67
    [17]
    卢秉恒. 智能制造与3D打印推动“中国制造2025”. 高科技与产业化, 2018(11): 22

    Lu B H. Intelligent manufacturing and 3D printing promote "Made in China 2025". High Technol Commer, 2018(11): 22
    [18]
    文彦, 卢川, 刘文兴. 美国橡树岭国家实验室对我国反应堆技术发展的启示. 科技视界, 2019(32): 98

    Wen Y, Lu C, Liu W X. Enlightenment from Oak Ridge National Laboratory on the development of reactor technology. Sci Technol Vision, 2019(32): 98
    [19]
    中国核电网. 美国橡树岭国家实验室(ORNL)核电反应堆核心3D打印技术取得阶段性突破[J/OL]. 中国核电网 (2020-05-12)[2020-11-01].https://www.cnnpn.cn/article/19410.html

    CNNPN. Oak Ridge National Laboratory (ORNL) has made a breakthrough in 3D printing of nuclear reactor cores[J/OL]. CNNPN (2020-05-12) [2020-11-01].https://www.cnnpn.cn/article/19410.html
    [20]
    任丽丽, 刘金平, 冯英超. 核电站主泵增材制造工艺初步研究. 金属加工(热加工), 2017(4): 55

    Ren L L, Liu J P, Feng Y C. Preliminary study on additive manufacturing process of main pump in nuclear power plant. MW Met Form, 2017(4): 55
    [21]
    Pinkerton A J. An analytical model of beam attenuation and powder heating during coaxial laser direct metal deposition. J Phys D:Appl Phys, 2007, 40(23): 7323 doi: 10.1088/0022-3727/40/23/012
    [22]
    王晓燕. 3D打印与工业制造. 北京: 机械工业出版社, 2019

    Wang X Y. 3D Printing and Industrial Manufacturing. Beijing: China Machine Press, 2019
    [23]
    谭磊, 赵建光. 金属3D打印技术核电领域研究现状及应用前景分析. 电焊机, 2019, 49(4): 339

    Tan L, Zhao J G. Analysis on the present research situation and application prospect of metal 3D printing technology in nuclear power field. Electr Weld Mach, 2019, 49(4): 339
    [24]
    Hislop Watson D. Pin Fin Heat Exchanger: American Patent, US2018266773. 2018-09-20
    [25]
    Thompson S M, Aspin Z S, Shamsaei N, et al. Additive manufacturing of heat exchangers: a case study on a multi-layered Ti–6Al–4V oscillating heat pipe. Add Manuf, 2015, 8: 163
    [26]
    姚文静. 西门子生产3D打印燃烧组件. 中国钛业, 2018(4): 49

    Yao W J. Siemens developed 3D printed combustion components. China Titanium Ind, 2018(4): 49
    [27]
    张丽英, 秦国鹏. 核燃料防屑板的激光增材制造技术研究. 电焊机, 2020, 50(7): 104 doi: 10.7512/j.issn.1001-2303.2020.07.16

    Zhang L Y, Qin G P. Research on laser additive manufacturing technology for the anti debris plate of fuel assembly. Electr Weld Mach, 2020, 50(7): 104 doi: 10.7512/j.issn.1001-2303.2020.07.16
    [28]
    王凯, 陈英杰, 鲁立, 等. 核级法兰面在线电弧增材再制造技术研究. 金属加工(热加工), 2020(7): 2

    Wang K, Chen Y J, Lu L, et al. Research on on-line arc additive remanufacturing technology for nuclear grade flange surface. MW Met Form, 2020(7): 2
    [29]
    Rosales J, van Rooyen I J, Parga C J. Characterizing surrogates to develop an additive manufacturing process for U3Si2 nuclear fuel. J Nucl Mater, 2019, 518: 117 doi: 10.1016/j.jnucmat.2019.02.026
    [30]
    Muhammad F, Majid A. Reactivity feedback coefficients of a material test research reactor fueled with high-density U3Si2 dispersion fuels. Nucl Eng Des, 2008, 238(10): 2583 doi: 10.1016/j.nucengdes.2008.05.002
    [31]
    张国明. 智能制造与智慧农业—基于增材思维的智能制造. 世界教育信息, 2018, 31(21): 77

    Zhang G M. Intelligent manufacturing and intelligent agriculture—intelligent manufacturing based on additive thinking. J World Educ, 2018, 31(21): 77
    [32]
    葛正浩, 陈浩, 雷聪蕊. 多材料零件三维打印建模可视化研究. 激光与光电子学进展, 2020, 57(23): 231403 doi: 10.3788/LOP57.231403

    Ge Z H, Chen H, Lei C R. Research on three-dimensional printing modeling visualization of multi-material parts. Laser Optoelectron Prog, 2020, 57(23): 231403 doi: 10.3788/LOP57.231403
    [33]
    闫萌, 王朋飞, 洪晓峰, 等. 锆合金包壳I-SCC性能评价. 核动力工程, 2017, 38(5): 138

    Yan M, Wang P F, Hong X F, et al. Evaluation on I-SCC properties of zirconium cladding. Nucl Power Eng, 2017, 38(5): 138
    [34]
    杨继全, 李娜, 施建平, 等. 异质材料3D打印技术. 武汉: 华中科技大学出版社, 2019

    Yang J Q, Li N, Shi J P. 3D Printing Technology of Heterogeneous Materials. Wuhan: Huazhong University of Science and Technology Press, 2019
    [35]
    吴晓军, 刘伟军, 王天然. 三维CAD零件异质材料建模方法. 机械工程学报, 2004, 40(5): 111 doi: 10.3321/j.issn:0577-6686.2004.05.023

    Wu X J, Liu W J, Wang T R. Heterogeneous materials object modeling for 3D CAD part. Chin J Mech Eng, 2004, 40(5): 111 doi: 10.3321/j.issn:0577-6686.2004.05.023
    [36]
    Garcia D, Jones M E, Zhu Y H, et al. Mesoscale design of heterogeneous material systems in multi-material additive manufacturing. J Mater Res, 2018, 33(1): 58 doi: 10.1557/jmr.2017.328
    [37]
    Gradl P R, Protz C, Cooper K, et al. GRCop-42 development and hot-fire testing using additive manufacturing powder bed fusion for channel-cooled combustion chambers // AIAA Propulsion and Energy 2020 Forum. AIAA, Indiana, USA. 2019: 4228
    [38]
    Onuike B, Bandyopadhyay A. Bond strength measurement for additively manufactured Inconel 718-GRCop84 copper alloy bimetallic joints. Add Manuf, 2019, 27: 576
    [39]
    田小永, 殷鸣, 李涤尘. 功能驱动的超材料结构数字化设计与3D打印. 中国科学:信息科学, 2015, 45(2): 224 doi: 10.1360/N112014-00240

    Tian X Y, Yin M, Li D C. Digital design and fabrication of metamaterials structure driven by microwave transmittance performance and 3D printing. Sci Sin Inf, 2015, 45(2): 224 doi: 10.1360/N112014-00240
    [40]
    刘帅, 王阳, 刘常升. 激光熔化沉积技术在制备梯度功能材料中的应用. 航空制造技术, 2018, 61(17): 47

    Liu S, Wang Y, Liu C S. Application of laser melting deposition technique in preparation of functionally gradient materials. Aeronaut Manuf Technol, 2018, 61(17): 47
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article Metrics

    Article Views(656) PDF Downloads(150) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return