AdvanceSearch
Volume 42 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
DUAN Jiping, TANG Xianglin, SHENG Junying, PENG Zichao, WANG Xuqing, ZOU Jinwen. Hot deformation characteristics of hot extruded FGH95 superalloys[J]. Powder Metallurgy Technology, 2024, 42(1): 36-44. doi: 10.19591/j.cnki.cn11-1974/tf.2021080002
Citation: DUAN Jiping, TANG Xianglin, SHENG Junying, PENG Zichao, WANG Xuqing, ZOU Jinwen. Hot deformation characteristics of hot extruded FGH95 superalloys[J]. Powder Metallurgy Technology, 2024, 42(1): 36-44. doi: 10.19591/j.cnki.cn11-1974/tf.2021080002

Hot deformation characteristics of hot extruded FGH95 superalloys

doi: 10.19591/j.cnki.cn11-1974/tf.2021080002
More Information
  • Corresponding author: E-mail: zoujw613@sina.com
  • Received Date: 2021-11-17
  • Publish Date: 2024-02-28
  • The thermal compression deformation behaviors of the hot extruded (HEX) FGH95 alloys were investigated systematically using the Gleeble 3800D thermal-mechanical simulator in the strain rate of 0.001~1.000 s−1 at the deformation temperature range of 1050~1120 ℃. The constitutive equations of the hot extruded FGH95 alloys were derived from the stress-strain curves obtained in the isothermal compression tests. Furthermore, the hot processing maps were established based on the dynamic models. In the results, the corresponding material constants of the constitutive equation are determined as Q=300.925 kJ·mol−1, α=0.01139 MPa−1, and n=1.86. Compared with the hot isostatic pressing (HIP) alloys, the activation energy of the hot extruded FGH95 alloys is declined by more than 50%. According to the energy dissipation efficiency and the microstructure analysis of the hot extruded FGH95 alloys, the processing safety zone and instability zone are identified during the hot extrusion process. Ultimately, the optimal processing conditions of the FGH95 alloys are proposed as the strain rate of 0.010~0.100 s−1 and the deformation temperature of 1050~1120 ℃.
  • loading
  • [1]
    汪武洋, 何峰, 邹金文. 粉末高温合金的应用与发展. 航空工程与维修, 2002(6): 26

    Wang W Y, He F, Zou J W. The application and development of P/M superalloys. Aviat Maint Eng, 2002(6): 26
    [2]
    周晓明, 冯业飞, 曾维虎, 等. 时效处理对粉末高温合金惯性摩擦焊接头室温拉伸行为的影响. 粉末冶金技术, 2021, 39(1): 8

    Zou X M, Feng Y F, Zeng W H, et al. Effect of aging treatment on the behavior of room temperature tensile of P/M superalloys used for inertia friction welding joints. Power Metall Technol, 2021, 39(1): 8
    [3]
    杨杰, 刘光旭, 张晶, 等. FGH96合金固相扩散连接界面组织与失效机制. 粉末冶金技术, 2021, 39(4): 9

    Yang J, Liu G X, Zhang J, et al. Microstructure and failure mechanism of FGH96 solid-state diffusion bonding interface. Power Metall Technol, 2021, 39(4): 9
    [4]
    王旭青, 张敏聪, 罗俊鹏, 等. 氩气雾化FGH95合金的热模拟实验. 航空材料学报, 2016, 36(6): 9

    Wang X Q, Zhang M C, Luo J P, et al. Thermal simulation test of AA-FGH95 superalloy. J Aeron Mater, 2016, 36(6): 9
    [5]
    王旭青, 罗学军. 复杂形状FGH95粉末盘形件固溶处理组织及性能研究. 材料工程, 2009(增刊1): 61

    Wang X Q, Luo X J. Study on microstructure and properties of complicate shape disk of FGH95 PM superalloy. J Mater Eng, 2009(Suppl 1): 61
    [6]
    国为民, 赵明汉, 董建新, 等. FGH95镍基粉末高温合金的研究和展望 机械工程学报, 2013, 49(18): 38

    Guo W M, Zhao M H, Dong J X, et al. Research and development in FGH95 P/M nickel based superalloy. J Mech Eng, 2013, 49(18): 38
    [7]
    Tian S G, Xie J, Zhou X M, et al. Microstructure and creep behavior of FGH95 nickel-base superalloy. Mater Sci Eng A, 2011, 528: 2076 doi: 10.1016/j.msea.2010.11.038
    [8]
    刘敏学, 吴宏, 王岩, 等. 退火态FGH96合金的热变形行为及热加工图. 中国有色金属学报, 2019, 29(11): 2561

    Liu M X, W H, Wang Y, et al. Hot deformation behavior and hot processing map of annealed FGH96 superalloy. Chin J Nonferrous Met, 2019, 29(11): 2561
    [9]
    陈龙, 司家勇, 刘松浩, 等. 挤压态FGH4096合金的热变形行为及热加工图, 材料导报, 2019, 33(12): 2047

    Chen L, Si J Y, Liu S H, et al. Hot deformation behavior and hot processing map of extruded FGH4096 superalloy. Mater Rev, 2019, 33(12): 2047
    [10]
    李慧中, 杨雷, 王岩, 等. 热挤压态Ni–Co–Cr基粉末高温合金热加工行为. 材料工程, 2020, 48(9): 115

    Li H Z, Yang L, Wang Y, et al. Hot working behavior of hot-extruded Ni–Co–Cr-based powder metallurgy superalloy. J Mater Eng, 2020, 48(9): 115
    [11]
    Wu H, Liu M X, Wang Y, et al. Experimental study and numerical simulation of dynamic recrystallization for a FGH96 superalloy during isothermal compression. J Mater Res Technol, 2020, 9(3): 5090 doi: 10.1016/j.jmrt.2020.03.026
    [12]
    Gajalappa Y, Krishnaiah A, Basanth Kumar K, et al. Flow behaviour kinetics of Inconel 600 superalloy under hot deformation using gleeble 3800. Mater Today Proceed, 2021, 45(6): 5320
    [13]
    Li Y J, Zhang Y, Chen Z Y, et al. Hot deformation behavior and dynamic recrystallization of GH690 nickel-based superalloy. J Alloys Compd, 2020, 847: 156507 doi: 10.1016/j.jallcom.2020.156507
    [14]
    Tan G, Li H Z, Wang Y, et al. Effect of Zener-Hollomon parameter on microstructure evolution of a HEXed PM nickel-based superalloy. J Alloys Compd, 2021, 874: 159889 doi: 10.1016/j.jallcom.2021.159889
    [15]
    Tan G, Li H Z, Wang Y, et al. Hot working characteristics of HEXed PM nickel-based superalloy during hot compression. Trans Nonferrous Met Soc China, 2020, 30(10): 2709 doi: 10.1016/S1003-6326(20)65414-0
    [16]
    王超渊, 东赟鹏, 王淑云, 等. 挤压态镍基粉末高温合金热变形行为与组织研究. 锻压技术, 2014, 39(4): 126

    Wang C Y, Dong Y P, Wang S Y, et al. Study on hot deformation behavior and microstructure characteristics of extruded Ni-base powder metallurgy superalloy. Forg Stamp Technol, 2014, 39(4): 126
    [17]
    Li H Z, Lei Y, Tan G, et al. Thermal deformation and dynamic recrystallization of a novel HEXed PM nickel-based superalloy. Mater Charact, 2020, 163: 110285 doi: 10.1016/j.matchar.2020.110285
    [18]
    He G, Liu F, Huang L, et al. Microstructure evolutions and nucleation mechanisms of dynamic recrystallization of a powder metallurgy Ni-based superalloy during hot compression. Mater Sci Eng A, 2016, 677: 496 doi: 10.1016/j.msea.2016.09.083
    [19]
    黄国超, 刘国权, 冯敏楠, 等. 固溶热处理工艺对FGH95合金组织和性能的影响. 材料热处理学报, 2017, 38(7): 71

    Huang G C, Liu G Q, Feng M N, et al. Effect of solution heat treatment on microstructure and properties of FGH95 alloy. Trans Mater Heat Treat, 2017, 38(7): 71
    [20]
    McQueen H J, Ryan N D. Constitutive analysis in hot working. Mater Sci Eng A, 2002, 322: 43 doi: 10.1016/S0921-5093(01)01117-0
    [21]
    Na Y S, Yeom J T, Park N K, et al. Simulation of microstructure for alloy 718 blade forging using 3D FEM simulation. J Alloys Compd, 2017, 693(4): 1076
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article Views(1571) PDF Downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return