AdvanceSearch
Volume 42 Issue 2
Apr.  2024
Turn off MathJax
Article Contents
FAN Xinyi, HU Lingui, DENG Zehaochen, YANG Jiaqi, SHEN Xiaoping. Effect of phosphorus content on the mechanical and friction properties of oil-impregnated bronze bearings[J]. Powder Metallurgy Technology, 2024, 42(2): 200-206. doi: 10.19591/j.cnki.cn11-1974/tf.2021090006
Citation: FAN Xinyi, HU Lingui, DENG Zehaochen, YANG Jiaqi, SHEN Xiaoping. Effect of phosphorus content on the mechanical and friction properties of oil-impregnated bronze bearings[J]. Powder Metallurgy Technology, 2024, 42(2): 200-206. doi: 10.19591/j.cnki.cn11-1974/tf.2021090006

Effect of phosphorus content on the mechanical and friction properties of oil-impregnated bronze bearings

doi: 10.19591/j.cnki.cn11-1974/tf.2021090006
More Information
  • Corresponding author: E-mail: xpshen171@163.com
  • Received Date: 2021-10-12
  • Publish Date: 2024-04-28
  • Oil-impregnated bronze bearings with the different phosphorus contents (0~1%, mass fraction) were produced at the different sintering temperatures. To study the effect of P content on the friction and mechanical properties of the bearings, the friction coefficient and wear loss at the certain speed and load were measured, and the open-loop strength of bearings was examined. In addition, the optimized bearing content and sintering process parameters under the certain working conditions were obtained. The results show that, with the increase of P content, the wear loss of the bearings reduces, while the mechanical performances are improved. However, when the P content is excessed, the oil content reduces which is lower than the minimum standard. As the sintering temperature increases, the mechanical properties of the bearings are improved, but the friction coefficient is unstable. The open-loop strength and oil content of the oil-impregnated bronze bearing samples with 0.7% P content by mass after sintering at 650 ℃ are 22 MPa and 13.52%, respectively, showing the good comprehensive performance as the stable friction factor and the best sintering state.
  • loading
  • [1]
    韩凤麟. 粉末冶金机械零件. 粉末冶金技术, 2016, 34(2): 155

    Han F L. Powder metallurgy machinery parts. Powder Metall Technol, 2016, 34(2): 155
    [2]
    韩凤麟, 贾成厂. 烧结金属含油轴承―原理, 设计, 制造与应用. 北京: 化学工业出版, 2004

    Han F L, Jia C C. Sintered Metal Oily Bearings―Principle, Design, Manufacture and Application. Beijing: Chemical Industry Publishing, 2004
    [3]
    方小亮, 郑合静. 铜基粉末冶金摩擦材料的应用及展望. 粉末冶金技术, 2020, 38(4): 313

    Fang X L, Zheng H J. Application and prospect of copper-based powder metallurgy friction materials. Powder Metall Technol, 2020, 38(4): 313
    [4]
    黄钊炫, 兰江, 杨诗钰, 等. MoS2铜基含油轴承摩擦性能的影响. 粉末冶金技术, 2020, 38(5): 363

    Huang Z X, Lan J, Yang S Y, et al. Effect of MoS2 and graphite on friction properties of bronze oil bearing. Powder Metall Technol, 2020, 38(5): 363
    [5]
    周作平, 申小平. 粉末冶金机械零件实用技术. 北京: 化学工业出版社, 2006

    Zhou Z P, Shen X P. Practical Technology of Powder Metallurgical Machinery Parts. Beijing: Chemical Industry Publishing, 2006
    [6]
    Sap E. Microstructural and mechanical properties of Cu-based Co−Mo-reinforced composites produced by the powder metallurgy method. J Mater Eng Perform, 2020, 29(12): 8461 doi: 10.1007/s11665-020-05309-4
    [7]
    Liu X, Zheng Y H, Guo Y L, et al. Study on the rolling friction and wear properties of surface densified powder metallurgy Fe−2Cu−0.6C material. Surf Topog, 2020, 8(1): 015009
    [8]
    Aygul E, Yalcinkaya S, Sahin Y. Characterization of Ti–6Al–(4V–7Nb–4Mo) biomedical alloys produced by powder metallurgy method. Powder Metall Met Ceram, 2020, 59: 296 doi: 10.1007/s11106-020-00162-5
    [9]
    朱胜利, 张惠斌, 王汉宁. 国内粉末冶金铜基含油轴承粉料制备技术研究进展 // 全国粉末冶金学术会议暨海峡两岸粉末冶金技术研讨会. 武汉, 2015: 301

    Zhu S L, Zhang H B, Wang H N. Progress in synthesis technologies of raw materials for powder metallurgy copper-based oil bearing in China // National Conference on Powder Metallurgy and Technical Seminar on Powder Metallurgy on Both Sides of the Taiwan Strait. Wuhan, 2015: 301
    [10]
    Kostornov A G, Fushchich O I. Effects of copper powder bearing material composition on working characteristics. Powder Metall Met Ceram, 2005, 44: 202 doi: 10.1007/s11106-005-0081-7
    [11]
    王凤云, 潘冶, 梁昌霞. CuSn−P−Mo−C系烧结轴承材料性能的研究. 中国材料进展, 2010, 29(5): 48

    Wang F Y, Pan Y, Liang C X. Study on properties of CuSn−P−Mo−C sintered bearing materials. Prog Chin Mater, 2010, 29(5): 48
    [12]
    王凤云, 潘冶. Ni和Fe对Cu−Sn−P系粉末冶金轴承材料性能的影响. 轴承, 2010(1): 33 doi: 10.3969/j.issn.1000-3762.2010.01.011

    Wang F Y, Pan Y. Effects of Ni and Fe on properties of Cu−Sn−P series sintered bearing materials. Bearing, 2010(1): 33 doi: 10.3969/j.issn.1000-3762.2010.01.011
    [13]
    李聪, 王金凤, 胡爽, 等. Cu−P钎料真空钎焊紫铜的钎焊后扩散及组织分析. 焊接学报, 2019, 40(3): 91

    Li C, Wang J F, Hu S, et al. Diffusion and microstructure analysis of copper vacuum brazing with Cu−P filler. Trans China Weld Inst, 2019, 40(3): 91
    [14]
    苏晓波. 加热工艺对铜合金挤压成型后组织性能的影响[学位论文]. 太原: 中北大学, 2017

    Sun X B. Effect of Heating Process on Microstructure and Properties of Copper Alloy after Extrusion [Dissertation]. Taiyuan: North University of China, 2017
    [15]
    刘佳思, 纪箴, 贾成厂, 等. 纳米AlN颗粒弥散增强铜基复合材料的制备及性能研究. 粉末冶金技术, 2017, 35(5): 323

    Liu J S, Ji Z, Jia C C. Preparation and properties of nano-AlN particle dispersion strengthened Cu-matrix composite. Powder Metall Technol, 2017, 35(5): 323
    [16]
    梁雪冰, 李改, 王林山, 等. 粉末冶金烧结硬化凸轮材料的摩擦磨损性能研究. 粉末冶金技术, 2015, 33(2): 83

    Liang X B, Li G, Wang L S, et al. Study on friction and wear properties of powder metallurgy sinter hardening cam material. Powder Metall Technol, 2015, 33(2): 83
    [17]
    邱天旭, 张继峰, 孙露, 等. 粉末冶金Fe−5(Cu−10Sn)−石墨−P−MoS2含油材料的摩擦性能. 粉末冶金材料科学与工程, 2019, 24(5): 459

    Qiu T X, Zhang J F, Sun L, et al. Tribological properties of Fe−5(Cu−10Sn)−garphite−P−MoS2 oil-containing materials. Mater Sci Eng Powder Metall, 2019, 24(5): 459
    [18]
    任澍忻, 陈文革, 冯涛, 等. 粉末冶金制备碳纤维增强铁−铜基摩擦材料的组织与性能. 粉末冶金技术, 2020, 38(2): 104

    Ren S X, Chen W G, Feng T, et al. Microstructure and properties of carbon fiber reinforced Fe−Cu based friction materials prepared by powder metallurgy. Powder Metall Technol, 2020, 38(2): 104
    [19]
    Zhang Y, Kovalev A, Meng Y. Combined effect of boundary layer formation and surface smoothing on friction and wear rate of lubricated point contacts during normal running-in processes. Friction, 2018, 6: 274 doi: 10.1007/s40544-018-0228-4
    [20]
    刘建秀, 潘胜利, 吴深, 等. 铜基粉末冶金摩擦材料增强相的研究发展状况. 粉末冶金工业, 2020, 30(1): 77

    Liu J X, Pan S L, Wu S, et al. Research and development of reinforced phases in copper based powder metallurgical friction materials. Powder Metall Ind, 2020, 30(1): 77
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article Metrics

    Article Views(200) PDF Downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return