AdvanceSearch
Volume 42 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
LIANG Kai, LIU Zhongjun, JI Shuai, GAO Boyang. Research progress on mechanical properties of porous metal materials used for filtration[J]. Powder Metallurgy Technology, 2024, 42(1): 59-67. doi: 10.19591/j.cnki.cn11-1974/tf.2021090012
Citation: LIANG Kai, LIU Zhongjun, JI Shuai, GAO Boyang. Research progress on mechanical properties of porous metal materials used for filtration[J]. Powder Metallurgy Technology, 2024, 42(1): 59-67. doi: 10.19591/j.cnki.cn11-1974/tf.2021090012

Research progress on mechanical properties of porous metal materials used for filtration

doi: 10.19591/j.cnki.cn11-1974/tf.2021090012
More Information
  • Corresponding author: E-mail: zjliu@xsyu.edu.cn
  • Received Date: 2021-12-06
  • Publish Date: 2024-02-28
  • As a new type of functional and structural material, the porous metal materials have been widely used in the fields of sound absorption, energy absorption, fluid distribution, heat exchange, catalysis, filtration, and separation, which are the most widely used in the field of filtration and separation. Porous metal materials can achieve the liquid−solid and gas−solid filtration separation for the different fluids in the fields of petroleum and petrochemical, fine chemical, coal chemical, and other fields, and the requirements for the materials and mechanical properties of the porous metal materials used in the different fields are also different. The preparation process of porous metal materials used for filtration is relatively mature, but there is little investigation on the corrosion resistance and mechanical properties of the porous metal materials, which will directly affect the use effect and life of such materials. The research progress on the mechanical properties and corrosion resistance of the porous metal materials used for filtration in recent years was briefly reviewed in this paper, and the existing problems in the corrosion and mechanical behavior of such materials were discussed. Finally, the research direction of the porous metal materials used for filtration was prospected.
  • loading
  • [1]
    Wang X H, Li J S, Hu R, et al. Mechanical properties and pore structure deformation behavior of biomedical porous titanium. Trans Nonferrous Met Soc China, 2015, 25(5): 1543 doi: 10.1016/S1003-6326(15)63756-6
    [2]
    李安, 刘世锋, 王伯健, 等. 放电等离子烧结金属多孔材料研究现状. 粉末冶金技术, 2017, 35(5): 378

    Li A, Liu S F, Wang B J, et al. Developmental states of porous metal materials prepared by spark plasma sintering. Powder Metall Technol, 2017, 35(5): 378
    [3]
    马军, 王建忠, 吴琛, 等. 金属丝网多孔材料研究进展. 粉末冶金技术, 2023, 41(6): 554

    Ma J, Wang J Z, Wu C, et al. Research progress on metal wire mesh porous materials. Powder Metall Technol, 2023, 41(6): 554
    [4]
    荆远, 刘忠军, 赵明慧, 等. 金属微孔膜在不同工业废水处理中的应用探索. 工业水处理, 2020, 40(12): 60

    Jing Y, Liu Z J, Zhao M H, et al. Application and exploration of metal microporous membrane in different industrial wastewater treatment. Ind Water Treat, 2020, 40(12): 60
    [5]
    林均品, 张来启, 宋西平, 等. 轻质γ-TiAl金属间化合物的研究现状. 中国材料进展, 2010, 29(2): 1

    Lin J P, Zhang L Q, Song X P, et al. Status of research and development of light-weight γ-TiAl intermetallic based compounds. Mater China, 2010, 29(2): 1
    [6]
    任澍忻, 陈文革, 冯涛, 等. 粉末冶金制备碳纤维增强铁–铜基摩擦材料的组织与性能. 粉末冶金技术, 2020, 38(2): 104

    Ren S X, Chen W G, Feng T, et al. Microstructure and properties of carbon fiber reinforced Fe–Cu based friction materials prepared by powder metallurgy. Powder Metall Technol, 2020, 38(2): 104
    [7]
    谈萍, 李增峰, 葛渊, 等. 钛粉粒度对轧制烧结多孔钛板力学性能的影响. 粉末冶金技术, 2020, 38(1): 30

    Tan P, Li Z F, Ge Y, et al. Effect of powder sizes on the mechanical properties of porous titanium sheets prepared by rolling and sintering process. Powder Metall Technol, 2020, 38(1): 30
    [8]
    李婷婷, 彭超群, 王日初, 等. Fe–Al、Ti–Al和Ni–Al系金属间化合物多孔材料的研究进展. 中国有色金属学报, 2011, 21(4): 784 doi: 10.1016/S1003-6326(11)60781-4

    Li T T, Peng C Q, Wang R C, et al. Research progress of Fe–Al, Ti–Al and Ni–Al intermetallic compound porous materials. Chin J Nonferrous Met, 2011, 21(4): 784 doi: 10.1016/S1003-6326(11)60781-4
    [9]
    倪锋, 孙高昂, 李武会, 等. 烧结温度对Cu–C–SnO2多孔材料组织与性能的影响. 粉末冶金技术, 2020, 38(6): 436

    Ni F, Sun G A, Li W H, et al. Effects of sintering temperature on microstructures and properties of Cu–C–SnO2 porous materials. Powder Metall Technol, 2020, 38(6): 436
    [10]
    奚正平, 汤慧萍, 王建永, 等. 金属多孔材料力学性能的研究. 稀有金属材料与工程, 2007, 36(增刊3): 555 doi: 10.3321/j.issn:1002-185x.2007.z3.133

    Xi Z P, Tang H P, Wang J Y, et al. Study on mechanical properties of metal porous materials. Rare Met Mater Eng, 2007, 36(Suppl 3): 555 doi: 10.3321/j.issn:1002-185x.2007.z3.133
    [11]
    许飞, 焦磊, 张娟. 烧结316L不锈钢粉末多孔材料拉伸性能的研究. 西安文理学院学报:自然科学版, 2012, 15(3): 61

    Xu F, Jiao L, Zhang J. A study on tensile properties of sintered 316L stainless steel powder porous materials. J Xi’an Univ Arts Sci Nat Sci, 2012, 15(3): 61
    [12]
    Duan L Y, Zhou Z Y, Yao B B. Fabrication, structural characterization and uniaxial tensile properties of novel sintered multi-layer wire mesh porous plates. Materials, 2018, 11(1): 156 doi: 10.3390/ma11010156
    [13]
    马军, 王建忠, 李爱君, 等. 金属纤维烧结毡力学本构关系的实验研究. 稀有金属材料与工程, 2018, 47(12): 3710

    Ma J, Wang J Z, Li A J, et al. Experimentally study on the constitutive relations between mechanical properties and relative density of sintered metal fiber felt. Rare Met Mater Eng, 2018, 47(12): 3710
    [14]
    Liu B, Wang X G, Tang Y, et al. Experimental study on the tensile property of a novel oriented linear porous metal. Adv Mater Sci Eng, 2016, 1016: 1
    [15]
    葛渊, 汤慧萍, 王建永, 等. 粉末粒度对蒙乃尔合金多孔材料压缩性能的影响. 功能材料, 2010, 41(增刊3): 527

    Ge Y, Tang H P, Wang J Y, et al. Effect of particle size on compressive property of nickel alloy porous materials. J Funct Mater, 2010, 41(Suppl 3): 527
    [16]
    苏淑兰, 饶秋华, 贺跃辉. FeAl金属间化合物多孔材料压缩力学性能. 稀有金属材料与工程, 2018, 47(8): 2453

    Su S L, Rao Q H, He Y H. Compression mechanical properties of FeAl intermetallic compound porous material. Rare Met Mater Eng, 2018, 47(8): 2453
    [17]
    Hao G L, Xu Q P, Wang H, et al. Effect of pore structure on mechanical properties of porous TiAl. Mater Sci Technol, 2016, 32(15): 1592 doi: 10.1080/02670836.2015.1132588
    [18]
    Nam K, Wolfenstine J, Choi H, et al. Study on the mechanical properties of porous tin oxide. Ceram Int, 2017, 43: 10913 doi: 10.1016/j.ceramint.2017.05.128
    [19]
    Klymenko V M. Spark plasma sintering of porous materials made of 1Kh18N9T corrosion-resistant steel fibers. Powder Metall Met Ceram, 2019, 58(1-2): 23 doi: 10.1007/s11106-019-00043-6
    [20]
    Rusu O, Rusu I. An analysis on some mechanical properties of AlMg10–SiCp ultralight metal composites. IOP Conf Ser Mater Sci Eng, 2019, 591: 012028 doi: 10.1088/1757-899X/591/1/012028
    [21]
    Takata N, Uematsu K, Kobashi M. Compressive properties of porous Ti–Al alloys fabricated by reaction synthesis using a space holder powder. Mater Sci Eng A, 2017, 697: 66 doi: 10.1016/j.msea.2017.05.015
    [22]
    Mirzaei M, Paydar M H. A novel process for manufacturing porous 316L stainless steel with uniform pore distribution. Mater Des, 2017, 121: 442 doi: 10.1016/j.matdes.2017.02.069
    [23]
    Jia J G, Jing Y Z, Liu D Q, et al. Compressive properties of porous Cu reinforced by inserting copper pillars or tubes. J Porous Mater, 2021, 28: 963 doi: 10.1007/s10934-021-01049-5
    [24]
    王建永, 汤慧萍, 朱纪磊, 等. 孔隙度对烧结不锈钢纤维多孔材料剪切性能的影响. 功能材料, 2010, 41(增刊3): 565

    Wang J Y, Tang H P, Zhu J L, et al. Effect of porosity on shear properties of sintering metal fibre porous material. J Funct Mater, 2010, 41(Suppl 3): 565
    [25]
    Wan Z P, Liu B, Zhou W, et al. Experimental study on shear properties of porous metal fiber sintered sheet. Mater Sci Eng A, 2012, 544: 33 doi: 10.1016/j.msea.2012.02.070
    [26]
    历长云, 杨二阔, 李雷, 等. 闭孔金属基复合泡沫材料制备技术研究进展. 粉末冶金技术, 2020, 38(5): 383

    Li C Y, Yang E K, Li L, et al. Research progress and preparation of closed-cell metal matrix syntactic foams. Powder Metall Technol, 2020, 38(5): 383
    [27]
    黄彩敏. 多孔材料的应用研究与发展前景. 装备制造技术, 2014(2): 230 doi: 10.3969/j.issn.1672-545X.2014.02.085

    Huang C M. Application research and development prospects of porous materials. Equip Manuf Technol, 2014(2): 230 doi: 10.3969/j.issn.1672-545X.2014.02.085
    [28]
    冯丹. 金属多孔材料在环境治理领域的应用. 天津冶金, 2020(1): 41 doi: 10.3969/j.issn.1006-110X.2020.01.012

    Feng D. Application of metal porous materials in environmental treatment. Tianjin Metall, 2020(1): 41 doi: 10.3969/j.issn.1006-110X.2020.01.012
    [29]
    杨军军, 况春江, 高春阳, 等. 几种金属多孔材料在SO2/O2/N2与H2S/CO2/N2中的耐蚀性能研究//2006年材料科学与工程新进展—2006北京国际材料周. 北京, 2006: 517

    Yang J J, Kuang C J, Gao C Y, et al. Research on corrosion resistance of several porous metal materials in the gas mixture SO2/O2/N2 and H2S/CO2/N2 // 2006 New Progress in Materials Science and Engineering—2006 Beijing International Materials Week. Beijing, 2006: 517
    [30]
    Natesan K. Corrosion performance of iron aluminides in mixed-oxidant environments. Mater Sci Eng A, 1998, 258(1-2): 126 doi: 10.1016/S0921-5093(98)00925-3
    [31]
    邢毅, 麻洪秋, 况春江. Fe3Al金属间化合物多孔材料的研究. 粉末冶金技术, 2005, 23(4): 263 doi: 10.3321/j.issn:1001-3784.2005.04.005

    Xing Y, Ma H Q, Kuang C J. Investigation on Fe3Al intermetallic porous materials. Powder Metall Technol, 2005, 23(4): 263 doi: 10.3321/j.issn:1001-3784.2005.04.005
    [32]
    Nowak K, Kupka M. High-temperature oxidation behavior of B2 FeAl based alloy with Cr, Zr and B additions. Mater Chem Phys, 2012, 132: 902 doi: 10.1016/j.matchemphys.2011.12.031
    [33]
    Tomaszewicz P, Wallwork G R. The oxidation of Fe–Al alloys containing chromium, nickel, or manganese. Corrosion, 1984, 40(4): 152 doi: 10.5006/1.3581931
    [34]
    Sienkiewicz J, Kuroda S, Molak R M, et al. Fabrication of TiAl intermetallic phases by heat treatment of warm sprayed metal precursors. Intermetallics, 2014, 49: 57 doi: 10.1016/j.intermet.2013.12.011
    [35]
    Chen M R, Jiang Y, He Y H, et al. Pore evolution regulation in synthesis of open pore structured Ti–Al intermetallic compounds by solid diffusion. J Alloys Compd, 2012, 521(16): 12
    [36]
    Sina H, Iyengar S. Reactive synthesis and characterization of titanium aluminides produced from elemental powder mixtures. J Therm Anal Calorim, 2015, 122(2): 689 doi: 10.1007/s10973-015-4815-6
    [37]
    Zheng Z, Jiang Y, Dong H X, et al. Environmental corrosion resistance of porous TiAl intermetallic compounds. Trans Nonferrous Met Soc China, 2009, 19(3): 581 doi: 10.1016/S1003-6326(08)60316-7
    [38]
    武治锋, 贺跃辉, 江垚, 等. 多孔TiAl金属间化合物的抗热盐酸腐蚀性能. 粉末冶金材料科学与工程, 2007, 12(5): 310 doi: 10.3969/j.issn.1673-0224.2007.05.010

    Wu Z F, He Y H, Jiang Y, et al. Corrosion resistance of porous TiAl alloy in hot hydrochloric acid solution. Mater Sci Eng Powder Metall, 2007, 12(5): 310 doi: 10.3969/j.issn.1673-0224.2007.05.010
    [39]
    Wu L, He Y H, Jiang Y, et al. Effect of pore structures on corrosion resistance of porous Ni3Al intermetallics. Trans Nonferrous Met Soc China, 2014, 24(11): 3509 doi: 10.1016/S1003-6326(14)63495-6
    [40]
    戴雅芳, 牛磊, 吴锦泉. Ni3Al金属间化合物的化学制备及耐蚀性研究. 铸造技术, 2015, 36(5): 1133

    Dai Y F, Niu L, Wu J Q. Chemical preparation and intermetallic compound Ni3Al and its corrosion resistance. Foundry Technol, 2015, 36(5): 1133
    [41]
    Grabke H J, Reese E, Spiegel M. The effects of chlorides, hydrogen chloride, and sulfur dioxide in the oxidation of steels below deposits. Corros Sci, 1995, 37(7): 1023 doi: 10.1016/0010-938X(95)00011-8
    [42]
    Folkeson N, Johansson L G, Svensson J E. Initial stages of the HCl-induced high-temperature corrosion of alloy 310. J Electrochem Soc, 2007, 154(9): 515 doi: 10.1149/1.2754174
    [43]
    谈萍, 陈金妹, 王建永, 等. 预氧化对Fe–Cr–Al多孔材料抗硫化腐蚀性能的影响. 功能材料, 2016, 47(3): 03215

    Tan P, Chen J M, Wang J Y, et al. Effect of preoxidation on sulfidation resistance of Fe–Cr–Al porous materials. J Funct Mater, 2016, 47(3): 03215
    [44]
    Feng Y P, Gaztelumendi N, Fornell J, et al. Mechanical properties, corrosion performance and cell viability studies on newly developed porous Fe−Mn−Si−Pd alloys. J Alloys Compd, 2017, 724: 1046 doi: 10.1016/j.jallcom.2017.07.112
    [45]
    刘怀礼. 腐蚀前后不锈钢纤维多孔材料的力学、吸声性能的变化规律[学位论文]. 沈阳: 东北大学, 2013

    Liu H L. Law of Tensile and Sound Absorption Properties of Stainless Steel Fiber Porous Materials Before/After Corrosion [Dissertation]. Shenyang: Northeastern University, 2013
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article Views(1559) PDF Downloads(49) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return